Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mikrochim Acta ; 191(4): 191, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467910

RESUMO

The objective of this work was to develop an actinide-specific monolithic support in capillary designed to immobilize precise Pu:Am ratios and its coupling to inductively coupled plasma mass spectrometry (ICP-MS) for immobilized metal affinity chromatography applications. This format offers many advantages, such as reducing the sample amount and waste production, which are of prime importance when dealing with highly active radioelements. Four organic phosphorylated-based monoliths were synthesized in situ through UV photo-polymerization in capillary and characterized. The capillary coupling to ICP-MS was set up in conventional laboratory using Th and Sm as chemical analogues of Pu and Am. A dedicated method was developed to quantify online Th and Sm amounts immobilized on the monolithic capillaries, allowing to select the best monolith candidate poly(BMEP-co-EDMA)adp. By precisely adjusting the elemental composition in the loading solutions and applying the developed quantification method, the controlled immobilization of several Th:Sm molar ratios onto the monolith was successful. Finally, the capillary ICP-MS coupling was transposed in a glove box and by applying the strategy developed to design the monolithic support using Th and Sm, the immobilization of a 10.5 ± 0.2 (RSD = 2.3%, n = 3) Pu:Am molar ratio reflecting Pu ageing over 48 years was achieved in a controlled manner on poly(BMEP-co-EDMA)adp. Hence, the new affinity capillary monolithic support was validated, with only hundred nanograms or less of engaged radioelements and can be further exploited to precisely determine differential interactions of Pu and Am with targeted biomolecules in order to better anticipate the effect of Am on Pu biodistribution.

2.
Anal Bioanal Chem ; 415(24): 6107-6115, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37550545

RESUMO

A cyclic tetra-phosphorylated biomimetic peptide (pS1368) has been proposed as a promising starting structure to design a decorporating agent of uranyl (UO22+) due to its affinity being similar to that of osteopontin (OPN), a target UO22+ protein in vivo. The determination of this peptide's selectivity towards UO22+ in the presence of competing endogenous elements is also crucial to validate this hypothesis. In this context, the selectivity of pS1368 towards UO22+ in the presence of Ca2+, Cu2+ and Zn2+ was determined by applying the simultaneous coupling of hydrophilic interaction chromatography (HILIC) to electrospray ionization (ESI-MS) and inductively coupled plasma (ICP-MS) mass spectrometry. Sr2+ was used as Ca2+ simulant, providing less challenging ICP-MS measurements. The separation of the complexes by HILIC was first set up. The selectivity of pS1368 towards UO22+ was determined in the presence of Sr2+, by adding several proportions of the latter to UO2(pS1368). UO22+ was not displaced from UO2(pS1368) even in the presence of a ten-fold excess of Sr2+. The same approach has been undertaken to demonstrate the selectivity of pS1368 towards UO22+ in the presence of Cu2+, Zn2+ and Sr2+ as competing endogenous cations. Hence, we showed that pS1368 was selective towards UO22+ in the presence of Sr2+, but also in the presence of Cu2+ and Zn2+. This study highlights the performance of HILIC-ESI-MS/ICP-MS simultaneous coupling to assess the potential of molecules as decorporating agents of UO22+.

3.
Chemistry ; 27(7): 2393-2401, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32955137

RESUMO

The impact of the contamination of living organisms by actinide elements has been a constant subject of attention since the 1950s. But to date still little is understood. Ferritin is the major storage and regulation protein of iron in many organisms, it consists of a protein ring and a ferrihydric core at the center. This work sheds light on the interactions of early actinides (Th, Pu) at oxidation state +IV with ferritin and its ability to store those elements at physiological pH compared to Fe. The ferritin-thorium load curve suggests that ThIV saturates the protein (2840 Th atoms per ferritin) in a similar way that Fe does on the protein ring. Complementary spectroscopic techniques (spectrophotometry, infrared spectroscopy, and X-ray absorption spectroscopy) were combined with molecular dynamics to provide a structural model of the interaction of ThIV and PuIV with ferritin. Comparison of spectroscopic data together with MD calculations suggests that ThIV and PuIV are complexed mainly on the protein ring and not on the ferrihydric core. Indeed from XAS data, there is no evidence of Fe neighbors in the Th and Pu environments. On the other hand, carboxylates from amino acids of the protein ring and a possible additional carbonate anion are shaping the cation coordination spheres. This thorough description from a molecular view point of ThIV and PuIV interaction with ferritin, an essential iron storage protein, is a cornerstone in comprehensive nuclear toxicology.


Assuntos
Ferritinas/química , Ferritinas/metabolismo , Ferro/metabolismo , Plutônio/metabolismo , Tório/metabolismo , Animais , Cavalos , Plutônio/química , Tório/química
4.
Analyst ; 144(20): 5928-5933, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31490474

RESUMO

The study of isotopic variations of endogenous and toxic metals in fluids and tissues is a recent research topic with an outstanding potential in biomedical and toxicological investigations. Most of the analyses have been performed so far in bulk samples, which can make the interpretation of results entangled, since different sources of stress or the alteration of different metabolic processes can lead to similar variations in the isotopic compositions of the elements in bulk samples. The downscaling of the isotopic analysis of elements at the sub-cellular level, is considered as a more promising alternative. Here we present for the first time the accurate determination of Cu isotopic ratios in four main protein fractions from lysates of neuron-like human cells exposed in vitro to 10 µM of natural uranium for seven days. These protein fractions were isolated by Size Exclusion Chromatography and analysed by Multi-Collector Inductively Coupled Plasma Mass Spectrometry to determine the Cu isotopic variations in each protein fraction with regard to the original cell lysate. Values obtained, expressed as δ65Cu, were -0.03 ± 0.14 ‰ (Uc, k = 2), -0.55 ± 0.20 ‰ (Uc, k = 2), -0.32 ± 0.21 ‰ (Uc, k = 2) and +0.84 ± 0.21 ‰ (Uc, k = 2) for the four fractions, satisfying the mass balance. The results obtained in this preliminary study pave the way for dedicated analytical developments to identify new specific disease biomarkers, to gain insight into stress-induced altered metabolic processes, as well as to decipher metabolic pathways of toxic elements.


Assuntos
Cobre/química , Isótopos/química , Neurônios/química , Neurônios/efeitos dos fármacos , Proteínas/química , Urânio/farmacologia , Radioisótopos de Cobre , Humanos , Espectrometria de Massas/métodos , Metabolômica/métodos , Urânio/química
5.
Arch Toxicol ; 93(8): 2141-2154, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31222525

RESUMO

Uranium (U) is the heaviest naturally occurring element ubiquitously present in the Earth's crust. Human exposure to low levels of U is, therefore, unavoidable. Recently, several studies have clearly pointed out that the brain is a sensitive target for U, but the mechanisms leading to the observed neurological alterations are not fully known. To deepen our knowledge of the biochemical disturbances resulting from U(VI) toxicity in neuronal cells, two complementary strategies were set up to identify the proteins that selectively bind U(VI) in human dopaminergic SH-SY5Y cells. The first strategy relies on the selective capture of proteins capable of binding U(VI), using immobilized metal affinity chromatography, and starting from lysates of cells grown in a U(VI)-free medium. The second strategy is based on the separation of U-enriched protein fractions by size-exclusion chromatography, starting from lysates of U(VI)-exposed cells. High-resolution mass spectrometry helped us to highlight 269 common proteins identified as the urano-proteome. They were further analyzed to characterize their cellular localization and biological functions. Four canonical pathways, related to the protein ubiquitination system, gluconeogenesis, glycolysis, and the actin cytoskeleton proteins, were particularly emphasized due to their high content of U(VI)-bound proteins. A semi-quantification was performed to concentrate on the ten most abundant proteins, whose physico-chemical characteristics were studied in particular depth. The selective interaction of U(VI) with these proteins is an initial element of proof of the possible metabolic effects of U(VI) on neuronal cells at the molecular level.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Urânio/toxicidade , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Gluconeogênese , Glicólise , Humanos , Complexo de Endopeptidases do Proteassoma/fisiologia , Ligação Proteica , Proteômica , Urânio/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(49): 14007-14012, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872304

RESUMO

The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.


Assuntos
Fracionamento Químico/métodos , Urânio/análise , Técnicas de Cultura de Células , Linhagem Celular/metabolismo , Humanos , Isótopos , Neurônios/metabolismo , Urânio/metabolismo
7.
Part Fibre Toxicol ; 11: 14, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24669904

RESUMO

BACKGROUND: The mechanisms of toxicity of metal oxide particles towards lung cells are far from being understood. In particular, the relative contribution of intracellular particulate versus solubilized fractions is rarely considered as it is very challenging to assess, especially for low-solubility particles such as cobalt oxide (Co3O4). METHODS: This study was possible owing to two highly sensitive, independent, analytical techniques, based on single-cell analysis, using ion beam microanalysis, and on bulk analysis of cell lysates, using mass spectrometry. RESULTS: Our study shows that cobalt oxide particles, of very low solubility in the culture medium, are readily incorporated by BEAS-2B human lung cells through endocytosis via the clathrin-dependent pathway. They are partially solubilized at low pH within lysosomes, leading to cobalt ions release. Solubilized cobalt was detected within the cytoplasm and the nucleus. As expected from these low-solubility particles, the intracellular solubilized cobalt content is small compared with the intracellular particulate cobalt content, in the parts-per-thousand range or below. However, we were able to demonstrate that this minute fraction of intracellular solubilized cobalt is responsible for the overall toxicity. CONCLUSIONS: Cobalt oxide particles are readily internalized by pulmonary cells via the endo-lysosomal pathway and can lead, through a Trojan-horse mechanism, to intracellular release of toxic metal ions over long periods of time, involving specific toxicity.


Assuntos
Cobalto/toxicidade , Pulmão/patologia , Nanopartículas/toxicidade , Óxidos/toxicidade , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cobalto/metabolismo , Citoplasma/metabolismo , Humanos , Indicadores e Reagentes , Pulmão/citologia , Pulmão/efeitos dos fármacos , Lisossomos/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/metabolismo , Óxidos/metabolismo , Tamanho da Partícula , Frações Subcelulares/metabolismo , Zinco/metabolismo
8.
Anal Chim Acta ; 1242: 340773, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657886

RESUMO

Several proteins have been identified in the past decades as targets of uranyl (UO22+) in vivo. However, the molecular interactions responsible for this affinity are still poorly known which requires the identification of the UO22+ coordination sites in these proteins. Biomimetic peptides are efficient chemical tools to characterize these sites. In this work, we developed a dedicated analytical method to determine the affinity of biomimetic, synthetic, multi-phosphorylated peptides for UO22+ and evaluate the effect of several structural parameters of these peptides on this affinity at physiological pH. The analytical strategy was based on the implementation of the simultaneous coupling of hydrophilic interaction chromatography (HILIC) with electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS). An essential step had been devoted to the definition of the best separation conditions of UO22+ complexes formed with di-phosphorylated peptide isomers and also with peptides of different structure and degrees of phosphorylation. We performed the first separations of several sets of UO22+ complexes by HILIC ever reported in the literature. A dedicated method had then been developed for identifying the separated peptide complexes online by ESI-MS and simultaneously quantifying them by ICP-MS, based on uranium quantification using external calibration. Thus, the affinity of the peptides for UO22+ was determined and made it possible to demonstrate that (i) the increasing number of phosphorylated residues (pSer) promotes the affinity of the peptides for UO22+, (ii) the position of the pSer in the peptide backbone has very low impact on this affinity (iii) and finally the cyclic structure of the peptide favors the UO22+ complexation in comparison with the linear structure. These results are in agreement with those previously obtained by spectroscopic techniques, which allowed to validate the method. Through this approach, we obtained essential information to better understand the mechanisms of toxicity of UO22+ at the molecular level and to further develop selective decorporating agents by chelation.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Urânio , Biomimética , Peptídeos/química , Cromatografia
9.
Artigo em Inglês | MEDLINE | ID: mdl-34102536

RESUMO

Peptides are efficient models used in different fields such as toxicology to study the interactions of several contaminants at the molecular scale, requiring the development of bio-analytical strategies. In this context, Hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS) was used to separate synthetic multiphosphorylated cyclopeptides and their positional isomers at physiological pH. We assessed (i) the selectivity of eleven HILIC columns, from different manufacturers and packed with diverse polar sorbents, and (ii) the effect of mobile phase composition on the separation selectivity. The best selectivity and baseline resolution were achieved with the columns grafted by neutral sorbents amide and diol. Furthermore, we investigated the HILIC retention mechanism of these peptides by examining the effect of the number of phosphorylated residues in the peptide scaffold on their retention. The peptide behavior followed the classical hydrophilic partitioning mechanism exclusively on amide and diol columns. This trend was not fully respected on bare and hybrid silica due to the attractive/repulsive interactions of the deprotonated surface silanol groups with the Arginine or Glutamate residues in the peptide scaffold according to the peptide sequence. The position of the phosphorylated amino acid in the peptide backbone also showed to have an impact on the retention, making possible the separation of positional isomers of these multiphosphorylated cyclic peptides using HILIC.


Assuntos
Cromatografia Líquida/métodos , Peptídeos Cíclicos , Espectrometria de Massas por Ionização por Electrospray/métodos , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Peptídeos Cíclicos/análise , Peptídeos Cíclicos/química
10.
Neurotoxicology ; 82: 35-44, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166614

RESUMO

Uranium exposure can lead to neurobehavioral alterations in particular of the monoaminergic system, even at non-cytotoxic concentrations. However, the mechanisms of uranium neurotoxicity after non-cytotoxic exposure are still poorly understood. In particular, imaging uranium in neurons at low intracellular concentration is still very challenging. We investigated uranium intracellular localization by means of synchrotron X-ray fluorescence imaging with high spatial resolution (< 300 nm) and high analytical sensitivity (< 1 µg.g-1 per 300 nm pixel). Neuron-like SH-SY5Y human cells differentiated into a dopaminergic phenotype were continuously exposed, for seven days, to a non-cytotoxic concentration (10 µM) of soluble natural uranyl. Cytoplasmic submicron uranium aggregates were observed accounting on average for 62 % of the intracellular uranium content. In some aggregates, uranium and iron were co-localized suggesting common metabolic pathways between uranium and iron storage. Uranium aggregates contained no calcium or phosphorous indicating that detoxification mechanisms in neuron-like cells are different from those described in bone or kidney cells. Uranium intracellular distribution was compared to fluorescently labeled organelles (lysosomes, early and late endosomes) and to fetuin-A, a high affinity uranium-binding protein. A strict correlation could not be evidenced between uranium and the labeled organelles, or with vesicles containing fetuin-A. Our results indicate a new mechanism of uranium cytoplasmic aggregation after non-cytotoxic uranyl exposure that could be involved in neuronal defense through uranium sequestration into less reactive species. The remaining soluble fraction of uranium would be responsible for protein binding and for the resulting neurotoxic effects.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Urânio/metabolismo , Linhagem Celular , Neurônios Dopaminérgicos/química , Humanos , Compostos Organometálicos/metabolismo , Espectrometria por Raios X , Síncrotrons , Urânio/análise
11.
Talanta ; 206: 120221, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514872

RESUMO

The 236U/238U isotope ratio is a widely used tracer, which provides information on source identification for safeguard purposes, nuclear forensic studies and environmental monitoring. This paper describes an original approach to determine 236U/238U ratios, below 10-8, in environmental samples by combination of ICP-MS/MS for 236U/238U ratio and multiple collector ICPMS measurements for 235U/238U and 234U/235U isotope ratios. Since the hydride form of UO+ (UOH+) is less prone to occur than UH+, we were focused on the oxidised forms of uranium in order to reduce hydride based-interferences in ICP-MS/MS. Then, in-cell ion-molecule reactions with O2 and CO2 were assessed to detect the uranium isotopes in mass-shift mode (Q1: U+ → Q2: UO+). The performances in terms of UO+ sensitivity and minimisation of hydride form of UO+ were evaluated using five different desolvating systems. The best conditions, using an Apex Ω or an Aridus system, produced uranium oxide hydride rate (235U16O1H+/235U16O+) of about 10-7 with O2 in the collision cell. The method was validated through measurements of two certified IRMM standards with 236U/238U isotope ratio of 1.245 × 10-7 and 1.052 × 10-8, giving results in agreement with certified reference values. The relative standard deviations on seven independent measurements for each standard were respectively of 1.5% and 6.2%. Finally, environmental samples corresponding to sediments from the radioactive contamination plume emitted by the Fukushima Daiichi Nuclear Power Plant accident were analysed after a well-established uranium chemical separation procedure. 236U/238U atomic ratios between 1.5 × 10-8 and 7 × 10-9 were obtained with a level accuracy lower than 20%.

12.
J Phys Chem B ; 112(20): 6490-9, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18442288

RESUMO

Structural, dynamical, and vibrational properties of complexes made of metal cobalt(III) coordinated to different amounts of cysteine molecules were investigated with DFT-based Car-Parrinello molecular dynamics (CPMD) simulations in liquid water solution. The systems are composed of Co(III):3Cys and Co(III):2Cys immersed in liquid water which are modeled by about 110 explicit water molecules, thus one of the biggest molecular systems studied with ab initio molecular simulations so far. In such a way, we were able to investigate structural and dynamical properties of a model of a typical metal binding site used by several proteins. Cobalt, mainly a toxicological agent, can replace the natural binding metal and thus modify the biochemical activity. The structure of the surrounding solvent around the metal-ligands complexes is reported in detail, as well as the metal-ligands coordination bonds, using radial distribution functions and electronic analyses with Mayer bond orders. Structures of the Cocysteine complexes are found in very good agreement with EXAFS experimental data, stressing the importance of considering the surrounding solvent in the modeling. A vibrational analysis is also conducted and compared to experiment, which strengthens the reliability of the solvent interactions with the Cocysteine complexes from our molecular dynamics simulations, as well as the dynamics of the systems. From this preliminary analysis, we could suggest a vibrational fingerprint able to distinguish Co(III):2Cys from Co(III):3Cys. Our simulations also show the importance of considering a quantum explicit solvent, as solute-to-solvent proton transfer events have been observed.


Assuntos
Cobalto/química , Cisteína/química , Análise Espectral/métodos , Água/química , Modelos Moleculares
13.
Neurotoxicology ; 68: 177-188, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30076899

RESUMO

Natural uranium is an ubiquitous element present in the environment and human exposure to low levels of uranium is unavoidable. Although the main target of acute uranium toxicity is the kidney, some concerns have been recently raised about neurological effects of chronic exposure to low levels of uranium. Only very few studies have addressed the molecular mechanisms of uranium neurotoxicity, indicating that the cholinergic and dopaminergic systems could be altered. The main objective of this study was to investigate the mechanisms of natural uranium toxicity, after 7-day continuous exposure, on terminally differentiated human SH-SY5Y cells exhibiting a dopaminergic phenotype. Cell viability was first assessed showing that uranium cytotoxicity only occurred at high exposure concentrations (> 125 µM), far from the expected values for uranium in the blood even after occupational exposure. SH-SY5Y differentiated cells were then continuously exposed to 1, 10, 125 or 250 µM of natural uranium for 7 days and uranium quantitative subcellular distribution was investigated by means of micro-PIXE (Particle Induced X-ray Emission). The subcellular element imaging revealed that uranium was located in defined perinuclear regions of the cytoplasm, suggesting its accumulation in organelles. Uranium was not detected in the nucleus of the differentiated cells. Quantitative analysis evidenced a very low intracellular uranium content at non-cytotoxic levels of exposure (1 and 10 µM). At higher levels of exposure (125 and 250 µM), when cytotoxic effects begin, a larger and disproportional intracellular accumulation of uranium was observed. Finally the expression of dopamine-related genes was quantified using real time qRT-PCR. The expression of monoamine oxidase B (MAO-B) gene was statistically significantly decreased after exposure to uranium while other dopamine-related genes were not modified. The down regulation of MAO-B was confirmed at the protein level. This original result suggests that the inhibition of dopamine catabolism, but also of other MAO-B substrates, could constitute selective effects of uranium neurotoxicity.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Monoaminoxidase/metabolismo , Urânio/metabolismo , Urânio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular , Citoplasma/metabolismo , Regulação para Baixo , Humanos
14.
Talanta ; 178: 894-904, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136912

RESUMO

The monitoring of isotopic fractionations in in vitro cultured human cell samples is a very promising and under-exploited tool to help identify the metabolic processes leading to disease-induced isotopic fractionations or decipher metabolic pathways of toxic metals in these samples. One of the limitations is that the analytes are often present at small amounts, ranging from tens to hundreds of ng, thus making challenging low-uncertainty isotope ratio determinations. Here we present a new procedure for U, Cu and Zn purification and isotope ratio determinations in cultured human neuron-like cells exposed to natural U. A thorough study of the influence of the limiting factors impacting the uncertainty of δ238U, δ66Zn and δ65Cu is also carried out. These factors include the signal intensity, which determines the within-day measurement reproducibility, the procedural blank correction and the matrix effects, which determine the accuracy of the mass bias correction models. Given the small Cu and U amounts in the cell samples, 15-30 and 20ng respectively, a highly efficient sample introduction system was employed in order to improve the analyte transport to the plasma and, hence, the signal intensity. With this device, the procedural blanks became the main uncertainty source of δ238U and δ65Cu values, accounting over 65% of the overall uncertainty. The matrix effects gave rise to inaccuracies in the mass bias correction models for samples finally dissolved in the minimal volumes required for the analysis, 100-150µL, leading to biases for U and Cu. We will show how these biases can be cancelled out by dissolving the samples in volumes of at least 300µL for Cu and 450µL for U. Using our procedure, expanded uncertainties (k = 2) of around 0.35‰ for δ238U and 0.15‰ for δ66Zn and δ65Cu could be obtained. The analytical approach presented in this work is also applicable to other biological microsamples and can be extended to other elements and applications.


Assuntos
Metais Pesados/química , Metais Pesados/metabolismo , Células Cultivadas , Cobre/química , Cobre/metabolismo , Humanos , Isótopos , Neurônios/citologia , Neurônios/metabolismo , Reprodutibilidade dos Testes , Urânio/química , Urânio/metabolismo , Zinco/química , Zinco/metabolismo
15.
Sci Rep ; 8(1): 17163, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464301

RESUMO

The impact of natural uranium (U) on differentiated human neuron-like cells exposed to 1, 10, 125, and 250 µM of U for seven days was assessed. In particular, the effect of the U uptake on the homeostatic modulation of several endogenous elements (Mg, P, Mn, Fe, Zn, and Cu), the U isotopic fractionation upon its incorporation by the cells and the evolution of the intracellular Cu and Zn isotopic signatures were studied. The intracellular accumulation of U was accompanied by a preferential uptake of 235U for cells exposed to 1 and 10 µM of U, whereas no significant isotopic fractionation was observed between the extra- and the intracellular media for higher exposure U concentrations. The U uptake was also found to modulate the homeostasis of Cu, Fe, and Mn for cells exposed to 125 and 250 µM of U, but the intracellular Cu isotopic signature was not modified. The intracellular Zn isotopic signature was not modified either. The activation of the non-specific U uptake pathway might be related to this homeostatic modulation. All together, these results show that isotopic and quantitative analyses of toxic and endogenous elements are powerful tools to help deciphering the toxicity mechanisms of heavy metals.


Assuntos
Metais/análise , Neurônios/química , Neurônios/metabolismo , Fósforo/análise , Urânio/metabolismo , Linhagem Celular , Homeostase , Humanos
16.
J Chromatogr A ; 1164(1-2): 139-44, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17640658

RESUMO

Hydrophilic interaction liquid chromatography (HILIC) is an alternative technique to ion pairing-reversed-phase liquid chromatography (IP-RPLC) and classical RPLC for separation of alkylimidazolium room-temperature ionic liquids (RTILs). Particularly, HILIC offers better retention and selectivity for short-chains RTILs imidazolium compounds. HILIC mechanisms were investigated by studying the influence of organic modifier content and salt concentration in the mobile phase. HILIC method was validated by quantifying 1-butyl-3-methylimidazolium cation (BMIM) degradation under gamma radiation at 2.5MGy. Development of separative reproducible analytical methods, including for low concentration, applicable to RTILs are today mandatory to improve RTILs chemistry.


Assuntos
Cromatografia Líquida/métodos , Líquidos Iônicos/química , Líquidos Iônicos/isolamento & purificação , Reprodutibilidade dos Testes , Temperatura
17.
J Inorg Biochem ; 101(7): 987-96, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17499361

RESUMO

Three stereoisomers of a Ru(II) complex bearing a chiral bis-phenanthroline Tröger's base analogue, TBphen2 (1), have been isolated from the reaction of the enantiomerically pure precursor complex Lambda- (or Delta-) cis-[Ru(phen)2(py)2]2+ (phen=1,10-phenanthroline, py=pyridine) with the racemic mixture of 1. Each stereoisomer of [Ru(phen)2TBphen2]2+ (2) has been characterized by 1H NMR and CD spectroscopy. Electrochemical studies revealed that the redox properties of 2 are not influenced by the stereochemistry, however, the electrochemical oxidation of the metallic center is irreversible because of the diazocine bridge of the TBphen2 ligand. Steady-state emission measurements in the presence of calf thymus DNA showed that the DNA binding of [Ru(phen)2TBphen2]2+ depends on the stereoisomer and is mainly controlled by the absolute configuration of the metal center of the complex. The affinity constant for the stereoisomer Delta-S-2 is 10(2) higher than that for Lambda-S-2 and rac-[Ru(phen)3]2+.


Assuntos
Azocinas/química , DNA/química , Compostos de Rutênio/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Estereoisomerismo
18.
Appl Spectrosc ; 59(5): 696-705, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15969817

RESUMO

This paper describes the ability of the combination of electrospray ionization mass spectrometry (ESI-MS) and anion-exchange chromatography coupled with inductively coupled plasma atomic emission spectrometry (AEC-ICP-AES) for cobalt speciation study in the binary cobalt-cysteine system. ESI-MS, allowing the identification and the characterization of the analytes, is used as a technique complementary to AEC-ICP-AES, providing elemental information on the separated species. The methods have been developed through the study of samples containing Co2+ and 1-fold to 5-fold molar ratios of cysteine over a pH range 2.5 to 11. In each case, cobalt-cysteine complexes were characterized by ESI-MS in negative ion mode. AEC-ICP-AES allowed further separation and detection of the cobalt species previously characterized. The strong influence of pH and ligand-to-metal ratios on the nature and stoichiometry of the species is demonstrated. For the first time, a direct experimental speciation diagram of cobalt species has been established owing to these analytical techniques. This work is a promising basis for the speciation analysis of cobalt, since a good knowledge of cobalt speciation is of prime importance to better understanding its fate in biological and environmental media.


Assuntos
Cromatografia por Troca Iônica/métodos , Cobalto/análise , Cobalto/química , Cisteína/análise , Cisteína/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Atômica/métodos , Resinas de Troca Aniônica , Sítios de Ligação , Substâncias Macromoleculares/análise , Substâncias Macromoleculares/química
19.
J Inorg Biochem ; 142: 126-31, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25450027

RESUMO

In the present work, we have investigated the coordination modes of cobalt with glutathione (γ-l-glutamyl-l-cysteinyl-glycine, GSH). A systematic study of cobalt-GSH complexes at basic and neutral pH has been undertaken with a multi-spectroscopic approach combined with quantum chemistry calculations. XAS (x-ray absorption spectroscopy) has been performed at the cobalt K edge in order to shed light into the cation coordination sphere and formal oxidation states. XANES (x-ray absorption near edge structure) enabled to show that in basic and neutral media, cobalt oxidation state is equal to +III and +II respectively. EXAFS (extended x-ray absorption fine structure) provided indications on the donor atoms involved in the coordination with cobalt as well as the bond lengths. DFT (density functional theory)-based calculations and NMR experiments have been performed to assess the most stable structure of the cobalt-GSH complex in basic conditions.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Glutationa/química , Espectroscopia por Absorção de Raios X
20.
Anal Chim Acta ; 885: 33-56, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26231891

RESUMO

Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical "matrix removal" approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the plasma with respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; and (iv) the resulting spectroscopic and non spectroscopic interferences. This first part of this tutorial review is addressed either to beginners or to more experienced scientists who are interested in the analysis of organic/hydro-organic matrices by ICP sources and would like to consider the theoretical background of effects induced by such matrices. The second part of this tutorial review will be dedicated to more practical consideration on instrumentation, such as adapted introductions devices, as well as instrumental and operating parameters optimization. The analytical strategies for elemental quantification in such matrices will also be addressed.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Compostos Orgânicos/química , Animais , Carbono/análise , Desenho de Equipamento , Humanos , Gases em Plasma/química , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA