Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Langmuir ; 40(17): 9189-9196, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38637013

RESUMO

Inorganic nanotubes have attracted much attention due to their unique physicochemical properties. Nanotubes can be prepared by scrolling exfoliated nanosheets under ambient conditions. However, how the nanosheet scrolled in its colloidal state has not been experimentally visualized. In this paper, we directly observed the scrolling process of nanosheets upon adsorption of organic cations. Exfoliated flat nanosheets of niobate and clay in aqueous colloids were found to scroll by adding organic cations, such as exfoliation reagents, to the colloids. Employment of cationic stilbazolium dye enabled in situ observation of the dye adsorption and scrolling by optical microscopy based on changes in color and morphology of the nanosheets. The scrolling was promoted for nanosheets adsorbed with a stilbazolium dye with a longer alkyl chain, suggesting that the interaction between the hydrophobic parts of the dye cations is the driving force of the scrolling. This finding should encourage research on the formation of nanotubes from nanosheets and also provides important guidelines for the selection of appropriate exfoliation reagents when exfoliating nanosheets from layered crystals.

2.
Small ; 19(39): e2302617, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37264519

RESUMO

To ensure the safety and performance of lithium-ion batteries (LIBs), a rational design and optimization of suitable cathode materials are crucial. Lithium nickel cobalt manganese oxides (NCM) represent one of the most popular cathode materials for commercial LIBs. However, they are limited by several critical issues, such as transition metal dissolution, formation of an unstable cathode-electrolyte interphase (CEI) layer, chemical instability upon air exposure, and mechanical instability. In this work, coating fabricated by self-assembly of osmotically delaminated sodium fluorohectorite (Hec) nanosheets onto NCM (Hec-NCM) in a simple and technically benign aqueous wet-coating process is reported first. Complete wrapping of NCM by high aspect ratio (>10 000) nanosheets is enabled through an electrostatic attraction between Hec nanosheets and NCM as well as by the superior mechanical flexibility of Hec nanosheets. The coating significantly suppresses mechanical degradation while forming a multi-functional CEI layer. Consequently, Hec-NCM delivers outstanding capacity retention for 300 cycles. Furthermore, due to the exceptional gas barrier properties of the few-layer Hec-coating, the electrochemical performance of Hec-NCM is maintained even after 6 months of exposure to the ambient atmosphere. These findings suggest a new direction of significantly improving the long-term stability and activity of cathode materials by creating an artificial CEI layer.

3.
Langmuir ; 39(14): 4895-4903, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989083

RESUMO

Clay minerals are abundant in caprock formations for anthropogenic storage sites for CO2, and they are potential capture materials for CO2 postcombustion sequestration. We investigate the response to CO2 exposure of dried fluorohectorite clay intercalated with Li+, Na+, Cs+, Ca2+, and Ba2+. By in situ powder X-ray diffraction, we demonstrate that fluorohectorite with Na+, Cs+, Ca2+, or Ba2+ does not swell in response to CO2 and that Li-fluorohectorite does swell. A linear uptake response is observed for Li-fluorohectorite by gravimetric adsorption, and we relate the adsorption to tightly bound residual water, which exposes adsorption sites within the interlayer. The experimental results are supported by DFT calculations.

4.
Nano Lett ; 22(18): 7499-7505, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094390

RESUMO

The transition dipole orientations of dye assemblies in heterostructures have a crucial impact on the efficiency of novel optoelectronic devices such as organic thin-film transistors and light-emitting diodes. These devices are frequently based on heterojunctions and tandem structures featuring multiple optical transitions. Precise knowledge of preferred orientations, spatial order, and spatial variations is highly relevant. We present a fast and universal large-area screening method to determine the transition dipole orientations in dye assemblies with diffraction-limited spatial resolution. Moreover, our hyperspectral imaging approach disentangles the orientations of different chromophores. As a demonstration, we apply our technique to dye monolayers with two optical transitions sandwiched between two ultrathin silicate nanosheets. A comprehensive model for dipole orientation distributions in monolayers reveals a long-range orientational order and a strong correlation between the two transitions.

5.
Langmuir ; 38(35): 10781-10790, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35863753

RESUMO

Swelling of clays is hampered by increasing layer charge. With vermiculite-type layer charge densities, crystalline swelling is limited to the two-layer hydrate, while osmotic swelling requires ion exchange with bulky and hydrophilic organic molecules or with Li+ cations to trigger repulsive osmotic swelling. Here, we report on surprising and counterintuitive osmotic swelling behavior of a vermiculite-type synthetic clay [Na0.7]inter[Mg2.3Li0.7]oct[Si4]tetO10F2 in mixtures of water and dimethyl sulfoxide (DMSO). Although swelling in pure water is restricted to crystalline swelling, with the addition of DMSO, osmotic swelling sets in at some threshold composition. Finally, when the DMSO concentration is increased further to 75 vol %, swelling is restricted again to crystalline swelling as expected. Repulsive osmotic swelling thus is observed in a narrow composition range of the binary water-DMSO mixture, where a freezing point suppression is observed. This suppression is related to DMSO and water molecules exhibiting strong interactions leading to stable molecular clusters. Based on this phenomenological observation, we hypothesize that the unexpected swelling behavior might be related to the formation of different complexes of interlayer cations being formed at different compositions. Powder X-ray diffraction and 23Na magic angle spinning-NMR evidence is presented that supports this hypothesis. We propose that the synergistic solvation of the interlayer sodium at favorable compositions exerts a steric pressure by the complexes formed in the interlayer. Concomitantly, the basal spacing is increased to a level, where entropic contributions of interlayer species lead to a spontaneous thermodynamically allowed one-dimensional dissolution of the clay stack.

6.
Langmuir ; 38(48): 14563-14573, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36395196

RESUMO

Bottom-up strategies for the production of well-defined nanostructures often rely on the self-assembly of anisotropic colloidal particles (nanowires and nanosheets). These building blocks can be obtained by delamination in a solvent of low-dimensionality crystallites. To optimize particle availability, determination of the delamination mechanism and the different organization stages of anisotropic particles in dispersion is essential. We address this fundamental issue by exploiting a recently developed system of fluorohectorite smectite clay mineral that delaminates in water, leading to colloidal dispersions of single-layer, very large (≈20 µm) clay sheets at high dilution. We show that when the clay crystallites are dispersed in water, they swell to form periodic one-dimensional stacks of fluorohectorite sheets with very low volume fraction (<1%) and therefore huge (≈100 nm) periods. Using optical microscopy and synchrotron X-ray scattering, we establish that these colloidal stacks bear strong similarities, yet subtle differences, with a smectic liquid-crystalline phase. Despite the high dilution, the colloidal stacks of sheets, called colloidal accordions, are extremely robust mechanically and can persist for years. Moreover, when subjected to AC electric fields, they rotate as solid bodies, which demonstrates their outstanding internal cohesion. Furthermore, our theoretical model captures the dependence of the stacking period on the dispersion concentration and ionic strength and explains, invoking the Donnan effect, why the colloidal accordions are kinetically stable over years and impervious to shear and Brownian motion. Because our model is not system specific, we expect that similar colloidal accordions frequently appear as an intermediate state during the delamination process of two-dimensional crystals in polar solvents.

7.
Angew Chem Int Ed Engl ; 61(35): e202207272, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35749137

RESUMO

Reported here is a multi-response anisotropic poly(N-isopropylacrylamide) hydrogel developed by using a rotating magnetic field to align magnetic double stacks (MDSs) that are fixed by polymerization. The magneto-orientation of MDSs originates from the unique structure with γ-Fe2 O3 nanoparticles sandwiched by two silicate nanosheets. The resultant gels not only exhibit anisotropic optical and mechanical properties but also show anisotropic responses to temperature and light. Gels with complex ordered structures of MDSs are further devised by multi-step magnetic orientation and photolithographic polymerization. These gels show varied birefringence patterns with potentials as information materials, and can deform into specific configurations upon stimulations. Multi-gait motions are further realized in the patterned gel through dynamic deformation under spatiotemporal light and friction regulation by imposed magnetic force. The magneto-orientation assisted fabrication of hydrogels with anisotropic structures and additional functions should bring opportunities for gel materials in biomedical devices, soft actuators/robots, etc.

8.
Chemistry ; 27(68): 16930-16937, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138493

RESUMO

The urge for carbon-neutral green energy conversion and storage technologies has invoked the resurgence of interest in applying brucite-type materials as low-cost oxygen evolution reaction (OER) electrocatalysts in basic media. Transition metal layered hydroxides belonging to the brucite-type structure family have been shown to display remarkable electrochemical activity. Recent studies on the earth-abundant Fe3+ containing mössbauerite and Fe3+ rich Co-Fe layered oxyhydroxide carbonates have suggested that grafted interlayer anions might play a key role in OER catalysis. To probe the effect of such interlayer anion grafting in brucite-like layered hydroxides, we report here a systematic study on the electrocatalytic performance of three distinct Ni and Co brucite-type layered structures, namely, (i) brucite-type M(OH)2 without any interlayer anions, (ii) LDHs with free interlayer anions, and (iii) hydroxynitrate salts with grafted interlayer anions. The electrochemical results indeed show that grafting has an evident impact on the electronic structure and the observed OER activity. Ni- and Co-hydroxynitrate salts with grafted anions display notably earlier formations of the electrocatalytically active species. Particularly Co-hydroxynitrate salts exhibit lower overpotentials at 10 mA cm-2 (η=0.34 V) and medium current densities of 100 mA cm-2 (η=0.40 V) compared to the corresponding brucite-type hydroxides and LDH materials.

9.
Langmuir ; 37(1): 461-468, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356310

RESUMO

Repulsive osmotic delamination is thermodynamically allowed "dissolution" of two-dimensional (2D) materials and therefore represents an attractive alternative to liquid-phase exfoliation to obtain strictly monolayered nanosheets with an appreciable aspect ratio with quantitative yield. However, osmotic delamination was so far restricted to aqueous media, severely limiting the range of accessible 2D materials. Alkali-metal intercalation compounds of MoS2 or graphite are excluded because they cannot tolerate even traces of water. We now succeeded in extending osmotic delamination to polar and aprotic organic solvents. Upon complexation of interlayer cations of synthetic hectorite clay by crown ethers, either 15-crown-5 or 18-crown-6, steric pressure is exerted, which helps in reaching the threshold separation required to trigger osmotic delamination based on translational entropy. This way, complete delamination in water-free solvents like aprotic ethylene and propylene carbonate, N-methylformamide, N-methylacetamide, and glycerol carbonate was achieved.

10.
Langmuir ; 37(1): 160-170, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33373239

RESUMO

Quasi-two-dimensional (2D) nanolayers, such as graphene oxide or clay layers, adhere to gas-liquid or liquid-liquid interfaces. Particularly, clays are of wide general interest in this context because of their extensive and crucial use as Pickering emulsion stabilizers, as well as for their ability to provide colloidosome capsules. So far, clays could only be localized at oil-water or air-saline-water interfaces in aggregated states, while our results now show that clay nanosheets without any modification can be located at air-deionized-water interfaces. The clay mineral used in the present work is synthetic fluorohectorite with a very high aspect ratio and superior quality in homogeneity and charge distribution compared to other clay minerals. This clay mineral is more suitable for achieving unmodified clay anchoring to fluid interfaces compared to other clay minerals used in previous works. In this context, we studied clay nanosheet organization at the air-water interface by combining different experimental methods: Langmuir-Blodgett trough studies, scanning electron microscopy (SEM) studies of film deposits, grazing-incidence X-ray off-specular scattering (GIXOS), and Brewster angle microscopy (BAM). Clay films formed at the air-water interface could be transferred to solid substrates by the Langmuir-Schaefer method. The BAM results indicate a dynamic equilibrium between clay sheets on the interface and in the subphase. Because of this dynamic equilibrium, the Langmuir monolayer surface pressure does not change significantly when pure clay sheets are spread on the liquid surface. However, also, GIXOS results confirm that there are clay nanosheets at the air-water interface. In addition, we find that clay sheets modified by a branched polymer are much more likely to be confined to the interface.

11.
Langmuir ; 37(49): 14491-14499, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34851639

RESUMO

Due to the compact two-dimensional interlayer pore space and the high density of interlayer molecular adsorption sites, clay minerals are competitive adsorption materials for carbon dioxide capture. We demonstrate that with a decreasing interlayer surface charge in a clay mineral, the adsorption capacity for CO2 increases, while the pressure threshold for adsorption and swelling in response to CO2 decreases. Synthetic nickel-exchanged fluorohectorite was investigated with three different layer charges varying from 0.3 to 0.7 per formula unit of Si4O10F2. We associate the mechanism for the higher CO2 adsorption with more accessible space and adsorption sites for CO2 within the interlayers. The low onset pressure for the lower-charge clay is attributed to weaker cohesion due to the attractive electrostatic forces between the layers. The excess adsorption capacity of the clay is measured to be 8.6, 6.5, and 4.5 wt % for the lowest, intermediate, and highest layer charges, respectively. Upon release of CO2, the highest-layer charge clay retains significantly more CO2. This pressure hysteresis is related to the same cohesion mechanism, where CO2 is first released from the edges of the particles thereby closing exit paths and trapping the molecules in the center of the clay particles.

12.
Angew Chem Int Ed Engl ; 60(11): 5890-5897, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289925

RESUMO

Ultrathin layers of oxides deposited on atomically flat metal surfaces have been shown to significantly influence the electronic structure of the underlying metal, which in turn alters the catalytic performance. Upscaling of the specifically designed architectures as required for technical utilization of the effect has yet not been achieved. Here, we apply liquid crystalline phases of fluorohectorite nanosheets to fabricate such architectures in bulk. Synthetic sodium fluorohectorite, a layered silicate, when immersed into water spontaneously and repulsively swells to produce nematic suspensions of individual negatively charged nanosheets separated to more than 60 nm, while retaining parallel orientation. Into these galleries oppositely charged palladium nanoparticles were intercalated whereupon the galleries collapse. Individual and separated Pd nanoparticles were thus captured and sandwiched between nanosheets. As suggested by the model systems, the resulting catalyst performed better in the oxidation of carbon monoxide than the same Pd nanoparticles supported on external surfaces of hectorite or on a conventional Al2 O3 support. XPS confirmed a shift of Pd 3d electrons to higher energies upon coverage of Pd nanoparticles with nanosheets to which we attribute the improved catalytic performance. DFT calculations showed increasing positive charge on Pd weakened CO adsorption and this way damped CO poisoning.

13.
Langmuir ; 36(37): 11061-11067, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32882135

RESUMO

Fragrance emulsions are used in many applications in daily life. Since a lot of fragrances are quite volatile substances, their release rate from emulsions is a crucial factor. Since in most cases a mixture of fragrances is applied, the olfactory impression might change over time if the release rates of individual components differ significantly. For such applications, encapsulation with barrier materials is sought to retard release in an unselective manner. Stable fragrance-in-water emulsions were made by applying a synthetic hectorite as Pickering emulsifier which was fixed as a multilayer stack at the oil-water interface by adding poly(ethylene imine). The release of different fragrance molecules (eucalyptol, limonene, α-pinene, and ethyl-2-methylbutyrate) from these emulsions was studied as the ratio between hectorite and poly(ethylene imine) was varied. While the release rates of all fragrances were retarded by the hybrid capsule acting as a nonselective barrier, the relative release was determined by the solubility of individual fragrances in the capsule material. Fragrance release could be further reduced by additional chemical cross-linking of poly(ethylene imine).

14.
Langmuir ; 36(14): 3814-3820, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32196347

RESUMO

The swelling of clay minerals in organic solvents or solvent mixtures is key for the fabrication of polymer nanocomposites with perfectly dispersed filler that contain only individual clay layers. Here, we investigated the swelling behavior of sodium hectorite in different ternary solvent mixtures containing methanol, acetonitrile, ethylene glycol, or glycerol carbonate with minimal amounts of water. We found that in these mixtures, less water is required than in the corresponding binary mixtures to allow for complete delamination by repulsive osmotic swelling. A quantitative study of osmotic swelling in a particular ternary mixture shows that organic solvents resemble swelling behavior in pure water. At hectorite contents larger than 5 vol %, the separation of individual layers scales with ϕ-1. At this concentration, a crossover is observed and swelling continues at a slower pace (ϕ-0.5) below this value.

15.
Angew Chem Int Ed Engl ; 59(3): 1286-1294, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31714661

RESUMO

Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between mechanical and thermal properties is missing, due to the lack of measurements of direction-dependent mechanical properties. In this work, exceptionally coherent and transparent hybrid Bragg stacks made of strictly alternating mica-type nanosheets (synthetic hectorite) and polymer layers (polyvinylpyrrolidone) were fabricated at large scale. Distinct from ordinary nanocomposites, these stacks display long-range periodicity, which is tunable down to angstrom precision. A large thermal transport anisotropy (up to 38) is consequently observed, with the high in-plane thermal conductivity (up to 5.7 W m-1 K-1 ) exhibiting an effective medium behavior. The unique hybrid material combined with advanced characterization techniques allows correlating the full elastic tensors to the direction-dependent thermal conductivities. We, therefore, provide a first analysis on how the direction-dependent Young's and shear moduli influence the flow of heat.

16.
Chemistry ; 25(9): 2103-2111, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178902

RESUMO

The design of microporous hybrid materials, tailored for diverse applications, is a key to address our modern society's imperative of sustainable technologies. Prerequisites are flexible customization of host-guest interactions by incorporating various types of functionality and by adjusting the pore structure. On that score, metal-organic frameworks (MOFs) have been the reference in the past decades. More recently, a new class of microporous hybrid materials emerged, microporous organically pillared layered silicates (MOPS). MOPS are synthesized by simple ion exchange of organic or metal complex cations in synthetic layered silicates. MOFs and MOPSs share the features of "component modularity" and "functional porosity". While both, MOFs and MOPS maintain the intrinsic characteristics of their building blocks, new distinctive properties arise from their assemblage. MOPS are unique since allowing for simultaneous and continuous tuning of micropores in the sub-Ångström range. Consequently, with MOPS the adsorbent recognition may be optimized without the need to explore different framework topologies. Similar to the third generation of MOFs (also termed soft porous crystals), MOPS are structurally ordered, permanently microporous solids that may also show a reversible structural flexibility above a distinct threshold pressure of certain adsorbents. This structural dynamism of MOPS can be utilized by meticulously adjusting the charge density of the silicate layers to the polarizability of the adsorbent leading to different gate opening mechanisms. The potential of MOPS is far from being fully explored. This Concept article highlights the main features of MOPS and illustrates promising directions for further research.

17.
Inorg Chem ; 58(15): 9655-9662, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31310522

RESUMO

Mössbauerite, a trivalent iron-only layered oxyhydroxide, has been recently identified as an electrocatalyst for water oxidation. We investigated the material as potential cocatalyst for photoelectrochemical water oxidation on semiconductor photoanodes. The band edge positions of mössbauerite were determined for the first time with a combination of Mott-Schottky analysis and UV-vis diffuse reflectance spectroscopy. The positive value of the Mott-Schottky slope and the flatband potential of 0.34 V vs reversible hydrogen electrode (RHE) identifies the material as an n-type semiconductor, but bare mössbauerite does not produce noticeable photocurrent during water oxidation. Type-II heterojunction formation by facile drop-casting with WO3 thin films yielded photoanodes with amended charge carrier separation and photocurrents up to 1.22 mA cm-2 at 1.23 V vs RHE. Mössbauerite is capable of increasing the charge carrier separation at lower potential and improving the photocurrent during photoelectrochemical water oxidation. The rise in photocurrent of the mössbauerite-functionalized WO3 photoanode thus originates from improved charge carrier separation and augmented hole collection efficiency. Our results highlight the potential of mössbauerite as a second-phase catalyst for semiconductor electrodes.

18.
Chemistry ; 24(36): 9004-9008, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29676820

RESUMO

Mössbauerite is investigated for the first time as an "iron-only" mineral for the electrocatalytic oxygen evolution reaction in alkaline media. The synthesis proceeds via intermediate mixed-valence green rust that is rapidly oxidized in situ while conserving the layered double hydroxide structure. The material catalyzes the oxygen evolution reaction on a glassy carbon electrode with a current density of 10 mA cm-2 at 1.63 V versus the reversible hydrogen electrode. Stability measurements, as well as post-electrolysis characterization are presented. This work demonstrates the applicability of iron-only layered double hydroxides as earth-abundant oxygen evolution electrocatalysts. Mössbauerite is of fundamental importance since as an all Fe3+ material its performance has no contributions from unknown synergistic effects as encountered for mixed valence Co/Ni/Fe LDH.

19.
Langmuir ; 34(28): 8215-8222, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29924623

RESUMO

Delamination by osmotic swelling of layered materials is generally thought to become increasingly difficult, if not impossible, with increasing layer charge density because of strong Coulomb interactions. Nevertheless, for the class of 2:1 layered silicates, very few examples of delaminating organo-vermiculites were reported in literature. We propose a mechanism for this repulsive osmotic swelling of highly charged vermiculites based on repulsive counterion translational entropy that dominates the interaction of adjacent layers above a certain threshold separation. Based on this mechanistic insight, we were able to identify several organic interlayer cations appropriate to delaminate highly charged, vermiculite-type clay minerals. These findings suggest that the osmotic swelling of highly charged organoclays is a generally applicable phenomenon rather than the odd exemption.

20.
Langmuir ; 34(16): 4843-4851, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29528234

RESUMO

Liquid microjets play a key role in fiber spinning, inkjet printing, and coating processes. In all of these applications, the liquid jets carry dispersed particles whose spatial and orientational distributions within the jet critically influence the properties of the fabricated structures. Despite its importance, there is currently no knowledge about the orientational distribution of particles within microjets and droplets. Here, we demonstrate a microfluidic device that allows to determine the local particle distribution and orientation by X-ray scattering. Using this methodology, we discovered unexpected changes in the particle orientation upon exiting the nozzle to form a free jet, and upon jet break-up into droplets, causing an unusual biaxial particle orientation. We show how flow and aspect ratio determine the flow orientation of anisotropic particles. Furthermore, we demonstrate that the observed phenomena are a general characteristic of anisotropic particles. Our findings greatly enhance our understanding of particle orientation in free jets and droplets and provide a rationale for controlling particle alignment in liquid jet-based fabrication methodologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA