Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Immunol ; 212(9): 1504-1518, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517294

RESUMO

Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Transplante de Rim , Linfócitos T Reguladores , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Rejeição de Enxerto/imunologia , Isoanticorpos , Transplante de Rim/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores CXCR5/imunologia , Imunidade Humoral/imunologia
2.
Arterioscler Thromb Vasc Biol ; 43(3): 399-409, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36633008

RESUMO

For over 25 years, our group has used regenerative medicine strategies to develop improved biomaterials for use in congenital heart surgery. Among other applications, we developed a tissue-engineered vascular graft (TEVG) by seeding tubular biodegradable polymeric scaffolds with autologous bone marrow-derived mononuclear cells. Results of our first-in-human study demonstrated feasibility as the TEVG transformed into a living vascular graft having an ability to grow, making it the first engineered graft with growth potential. Yet, outcomes of this first Food and Drug Administration-approved clinical trial evaluating safety revealed a prohibitively high incidence of early TEVG stenosis, preventing the widespread use of this promising technology. Mechanistic studies in mouse models provided important insight into the development of stenosis and enabled advanced computational models. Computational simulations suggested both a novel inflammation-driven, mechano-mediated process of in vivo TEVG development and an unexpected natural history, including spontaneous reversal of the stenosis. Based on these in vivo and in silico discoveries, we have been able to rationally design strategies for inhibiting TEVG stenosis that have been validated in preclinical large animal studies and translated to the clinic via a new Food and Drug Administration-approved clinical trial. This progress would not have been possible without the multidisciplinary approach, ranging from small to large animal models and computational simulations. This same process is expected to lead to further advances in scaffold design, and thus next generation TEVGs.


Assuntos
Implante de Prótese Vascular , Engenharia Tecidual , Animais , Camundongos , Humanos , Engenharia Tecidual/métodos , Prótese Vascular , Constrição Patológica , Alicerces Teciduais
3.
Pediatr Cardiol ; 44(5): 973-995, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37149833

RESUMO

Patch augmentation of the right ventricular outflow tract (RVOT) and pulmonary artery (PA) arterioplasty are relatively common procedures in the surgical treatment of patients with congenital heart disease. To date, several patch materials have been applied with no agreed upon clinical standard. Each patch type has unique performance characteristics, cost, and availability. There are limited data describing the various advantages and disadvantages of different patch materials. We performed a review of studies describing the clinical performance of various RVOT and PA patch materials and found a limited but growing body of literature. Short-term clinical performance has been reported for a multitude of patch types, but comparisons are limited by inconsistent study design and scarce histologic data. Standard clinical criteria for assessment of patch efficacy and criteria for intervention need to be applied across patch types. The field is progressing with improvements in outcomes due to newer patch technologies focused on reducing antigenicity and promoting neotissue formation which may have the ability to grow, remodel, and repair.


Assuntos
Cardiopatias Congênitas , Tetralogia de Fallot , Obstrução do Fluxo Ventricular Externo , Humanos , Artéria Pulmonar/cirurgia , Obstrução do Fluxo Ventricular Externo/cirurgia , Ventrículos do Coração/cirurgia , Cardiopatias Congênitas/cirurgia , Procedimentos Cirúrgicos Vasculares/métodos , Resultado do Tratamento , Tetralogia de Fallot/cirurgia
4.
Comput Methods Appl Mech Eng ; 417(Pt B)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38044957

RESUMO

We implement full, three-dimensional constrained mixture theory for vascular growth and remodeling into a finite element fluid-structure interaction (FSI) solver. The resulting "fluid-solid-growth" (FSG) solver allows long term, patient-specific predictions of changing hemodynamics, vessel wall morphology, tissue composition, and material properties. This extension from short term (FSI) to long term (FSG) simulations increases clinical relevance by enabling mechanobioloigcally-dependent studies of disease progression in complex domains.

5.
Am J Transplant ; 22(6): 1550-1563, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114045

RESUMO

CCR5 KO kidney transplant (KTx) recipients are extraordinarily high alloantibody producers and develop pathology that mimics human antibody-mediated rejection (AMR). C57BL/6 and CCR5 KO mice (H-2b ) were transplanted with A/J kidneys (H-2a ); select cohorts received adoptive cell therapy (ACT) with alloprimed CXCR5+ CD8+ T cells (or control cells) on day 5 after KTx. ACT efficacy was evaluated by measuring posttransplant alloantibody, pathology, and allograft survival. Recipients were assessed for the quantity of CXCR5+ CD8+ T cells and CD8-mediated cytotoxicity to alloprimed IgG+ B cells. Alloantibody titer in CCR5 KO recipients was four-fold higher than in C57BL/6 recipients. The proportion of alloprimed CXCR5+ CD8+ T cells 7 days after KTx in peripheral blood, lymph node, and spleen was substantially lower in CCR5 KO compared to C57BL/6 recipients. In vivo cytotoxicity towards alloprimed IgG+ B cells was also reduced six-fold in CCR5 KO recipients. ACT with alloprimed CXCR5+ CD8+ T cells (but not alloprimed CXCR5- CD8+ or third-party primed CXCR5+ CD8+ T cells) substantially reduced alloantibody titer, ameliorated AMR pathology, and prolonged allograft survival. These results indicate that a deficiency in quantity and function of alloprimed CXCR5+ CD8+ T cells contributes to high alloantibody and AMR in CCR5 KO recipient mice, which can be rescued with ACT.


Assuntos
Transplante de Rim , Animais , Linfócitos T CD8-Positivos , Rejeição de Enxerto/patologia , Imunoglobulina G , Isoanticorpos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
FASEB J ; 35(10): e21849, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473380

RESUMO

Macrophages are a critical driver of neovessel formation in tissue-engineered vascular grafts (TEVGs), but also contribute to graft stenosis, a leading clinical trial complication. Macrophage depletion via liposomal delivery of clodronate, a first-generation bisphosphonate, mitigates stenosis, but simultaneously leads to a complete lack of tissue development in TEVGs. This result and the associated difficulty of utilizing liposomal delivery means that clodronate may not be an ideal means of preventing graft stenosis. Newer generation bisphosphonates, such as zoledronate, may have differential effects on graft development with more facile drug delivery. We sought to examine the effect of zoledronate on TEVG neotissue formation and its potential application for mitigating TEVG stenosis. Thus, mice implanted with TEVGs received zoledronate or no treatment and were monitored by serial ultrasound for graft dilation and stenosis. After two weeks, TEVGs were explanted for histological examination. The overall graft area and remaining graft material (polyglycolic-acid) were higher in the zoledronate treatment group. These effects were associated with a corresponding decrease in macrophage infiltration. In addition, zoledronate affected the deposition of collagen in TEVGs, specifically, total and mature collagen. These differences may be, in part, explained by a depletion of leukocytes within the bone marrow that subsequently led to a decrease in the number of tissue-infiltrating macrophages. TEVGs from zoledronate-treated mice demonstrated a significantly greater degree of smooth muscle cell presence. There was no statistical difference in graft patency between treatment and control groups. While zoledronate led to a decrease in the number of macrophages in the TEVGs, the severity of stenosis appears to have increased significantly. Zoledronate treatment demonstrates that the process of smooth muscle cell-mediated neointimal hyperplasia may occur separately from a macrophage-mediated mechanism.


Assuntos
Prótese Vascular/estatística & dados numéricos , Neointima/terapia , Engenharia Tecidual/métodos , Enxerto Vascular/métodos , Ácido Zoledrônico/farmacologia , Animais , Conservadores da Densidade Óssea/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neointima/patologia , Alicerces Teciduais/química
7.
Wound Repair Regen ; 30(1): 82-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837653

RESUMO

Non-healing wounds are a major threat to public health throughout the United States. Tissue healing is complex multifactorial process that requires synchronicity of several cell types. Endolysosomal trafficking, which contributes to various cell functions from protein degradation to plasma membrane repair, is an understudied process in the context of wound healing. The lysosomal trafficking regulator protein (LYST) is an essential protein of the endolysosomal system through an indeterminate mechanism. In this study, we examine the impact of impaired LYST function both in vitro with primary LYST mutant fibroblasts as well as in vivo with an excisional wound model. The wound model shows that LYST mutant mice have impaired wound healing in the form of delayed epithelialization and collagen deposition, independent of macrophage infiltration and polarisation. We show that LYST mutation confers a deficit in MCP-1, IGF-1, and IGFBP-2 secretion in beige fibroblasts, which are critical factors in normal wound healing. Identifying the mechanism of LYST function is important for understanding normal wound biology, which may facilitate the development of strategies to address problem wound healing.


Assuntos
Lisossomos , Cicatrização , Animais , Colágeno , Fibroblastos , Camundongos , Reepitelização
8.
Curr Cardiol Rep ; 23(5): 47, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33733317

RESUMO

PURPOSE OF REVIEW: Large-scale tissue engineering of cardiac constructs is a rapidly advancing field; however, there are several barriers still associated with the creation and clinical application of large-scale engineered cardiac tissues. We provide an overview of the current challenges and recently (within the last 5 years) described promising solutions to overcoming said challenges. RECENT FINDINGS: The five major criteria yet to be met for clinical application of engineered cardiac tissues are successful electrochemical/mechanical cell coupling, efficient maturation of cardiomyocytes, functional vascularization of large tissues, balancing appropriate immune response, and large-scale generation of constructs. Promising solutions include the use of carbon/graphene in conjunction with existing scaffold designs, utilization of biological hormones, 3D bioprinting, and gene editing. While some of the described barriers to generation of large-scale cardiac tissue have seen encouraging advancements, there is no solution that yet achieves all 5 described criteria. It is vital then to consider a combination of techniques to achieve the optimal construct. Critically, following the demonstration of a viable construct, there remain important considerations to address associated with good manufacturing practices and establishing a standard for clinical trials.


Assuntos
Bioimpressão , Engenharia Tecidual , Humanos , Miócitos Cardíacos , Alicerces Teciduais
9.
FASEB J ; 33(4): 5089-5100, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629890

RESUMO

Recently, our group demonstrated that immobilized VEGF can capture flowing endothelial cells (ECs) from the blood in vitro and promote endothelialization and patency of acellular tissue-engineered vessels (A-TEVs) into the arterial system of an ovine animal model. Here, we demonstrate implantability of submillimeter diameter heparin and VEGF-decorated A-TEVs in a mouse model and discuss the cellular and immunologic response. At 1 mo postimplantation, the graft lumen was fully endothelialized, as shown by expression of EC markers such as CD144, eNOS, CD31, and VEGFR2. Interestingly, the same cells coexpressed leukocyte/macrophage (Mϕ) markers CD14, CD16, VEGFR1, CD38, and EGR2. Notably, there was a stark difference in the cellular makeup between grafts containing VEGF and those containing heparin alone. In VEGF-containing grafts, infiltrating monocytes (MCs) converted into anti-inflammatory M2-Mϕs, and the grafts developed well-demarcated luminal and medial layers resembling those of native arteries. In contrast, in grafts containing only heparin, MCs converted primarily into M1-Mϕs, and the endothelial and smooth muscle layers were not well defined. Our results indicate that VEGF may play an important role in regulating A-TEV patency and regeneration, possibly by regulating the inflammatory response to the implants.-Smith, R. J., Jr., Yi, T., Nasiri, B., Breuer, C. K., Andreadis, S. T. Implantation of VEGF-functionalized cell-free vascular grafts: regenerative and immunological response.


Assuntos
Macrófagos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Endotélio/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo
10.
Pediatr Cardiol ; 41(8): 1539-1547, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33161457

RESUMO

Children born with single ventricle physiology who undergo Fontan palliation face a diverse set of long-term complications. However, patient follow-up has in large part been limited to single institutional experiences without uniform application of diagnostic modalities to screen for relevant outcomes. Additionally, the use of different graft materials and variable surgical technique as part of the Fontan procedure has further complicated the evaluation of single ventricle patients. The purpose of this review is to define the changes in the Fontan pathway specific to the graft material used and its relationship to patient outcomes. As a means of introduction, we briefly review the historical evolution of the Fontan procedure with a focus on the intent behind design changes and incorporation of different biomaterials. We further delineate changes to the Fontan pathway which include the development of stenosis, differential growth, thrombosis, and calcification. Ultimately, the recognition of the changes noted within the Fontan pathway need to be assessed relative to their impact on patient hemodynamics, functional capacity, and Fontan-associated comorbidities.


Assuntos
Técnica de Fontan/métodos , Cardiopatias Congênitas/cirurgia , Ventrículos do Coração/anormalidades , Criança , Pré-Escolar , Constrição Patológica/etiologia , Feminino , Seguimentos , Técnica de Fontan/efeitos adversos , Ventrículos do Coração/cirurgia , Hemodinâmica , Humanos , Masculino , Polietilenotereftalatos/uso terapêutico , Politetrafluoretileno/uso terapêutico , Trombose/etiologia
11.
Stem Cells ; 36(6): 915-924, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29430789

RESUMO

Neuroblastoma, the most common extracranial solid tumor in childhood, remains a therapeutic challenge. However, one promising patient treatment strategy is the delivery of anti-tumor therapeutic agents via mesenchymal stromal cell (MSC) therapy. MSCs have been safely used to treat genetic bone diseases such as osteogenesis imperfecta, cardiovascular diseases, autoimmune diseases, and cancer. The pro-inflammatory cytokine interferon-gamma (IFNγ) has been shown to decrease tumor proliferation by altering the tumor microenvironment (TME). Despite this, clinical trials of systemic IFNγ therapy have failed due to the high blood concentration required and associated systemic toxicities. Here, we developed an intra-adrenal model of neuroblastoma, characterized by liver and lung metastases. We then engineered MSCs to deliver IFNγ directly to the TME. In vitro, these MSCs polarized murine macrophages to the M1 phenotype. In vivo, we attained a therapeutically active TME concentration of IFNγ without increased systemic concentration or toxicity. The TME-specific IFNγ reduced tumor growth rate and increased survival in two models of T cell deficient athymic nude mice. Absence of this benefit in NOD SCID gamma (NSG) immunodeficient mouse model indicates a mechanism dependent on the innate immune system. IL-17 and IL-23p19, both uniquely M1 polarization markers, transiently increased in the tumor interstitial fluid. Finally, the MSC vehicle did not promote tumor growth. These findings reveal that MSCs can deliver effective cytokine therapy directly to the tumor while avoiding systemic toxicity. This method transiently induces inflammatory M1 macrophage polarization, which reduces tumor burden in our novel neuroblastoma murine model. Stem Cells 2018;36:915-924.


Assuntos
Imunoterapia/métodos , Animais , Diferenciação Celular , Feminino , Humanos , Interferon gama , Células-Tronco Mesenquimais , Camundongos , Camundongos Nus , Microambiente Tumoral
12.
FASEB J ; : fj201800458, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906242

RESUMO

We previously developed a tissue-engineered vascular graft (TEVG) made by seeding autologous cells onto a biodegradable tubular scaffold, in an attempt to create a living vascular graft with growth potential for use in children undergoing congenital heart surgery. Results of our clinical trial showed that the TEVG possesses growth capacity but that its widespread clinical use is not yet advisable due to the high incidence of TEVG stenosis. In animal models, TEVG stenosis is caused by increased monocytic cell recruitment and its classic ("M1") activation. Here, we report on the source and regulation of these monocytes. TEVGs were implanted in wild-type, CCR2 knockout ( Ccr2-/-), splenectomized, and spleen graft recipient mice. We found that bone marrow-derived Ly6C+hi monocytes released from sequestration by the spleen are the source of mononuclear cells infiltrating the TEVG during the acute phase of neovessel formation. Furthermore, short-term administration of losartan (0.6 g/L, 2 wk), an angiotensin II type 1 receptor antagonist, significantly reduced the macrophage populations (Ly6C+/-/F480+) in the scaffolds and improved long-term patency in TEVGs. Notably, the combined effect of bone marrow-derived mononuclear cell seeding with short-term losartan treatment completely prevented the development of TEVG stenosis. Our results provide support for pharmacologic treatment with losartan as a strategy to modulate monocyte infiltration into the grafts and thus prevent TEVG stenosis.-Ruiz-Rosado, J. D. D., Lee, Y.-U., Mahler, N., Yi, T., Robledo-Avila, F., Martinez-Saucedo, D., Lee, A. Y., Shoji, T., Heuer, E., Yates, A. R., Pober, J. S., Shinoka, T., Partida-Sanchez, S., Breuer, C. K. Angiotensin II receptor I blockade prevents stenosis of tissue engineered vascular grafts.

13.
Blood ; 128(12): 1642-50, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27471233

RESUMO

Interactions between collagenous extracellular matrices and von Willebrand factor (VWF) are critical for hemostasis and thrombosis. In the present study, we investigated the contribution of an extracellular matrix (ECM) abnormality to the bleeding diathesis in thrombospondin-2 (TSP2) knockout (KO) mice. First, we performed adoptive bone marrow transplantation and observed that introduction of wild-type (WT) marrow into lethally irradiated TSP2 KO mice did not rescue the bleeding diathesis. However, platelets in transplanted mice displayed an inherent aggregation defect, which complicated interpretation. Second, we performed interposition of arterial segments denuded of endothelium. Denuded TSP2 KO arteries grafted into WT mice remained patent in vivo. In contrast, WT grafts underwent thrombosis and were completely occluded within 24 to 48 hours. The nonthrombogenic property of the TSP2 KO ECM was confirmed in vitro by exposing platelets to TSP2 KO dermal fibroblast (DF)-derived ECM. To further probe the effect of TSP2 deficiency, ECM production and deposition by WT and TSP2 KO DFs was analyzed via polymerase chain reaction, immunofluorescence, and scanning electron microscopy and showed similar patterns. In addition, atomic force microscopy (AFM) analysis of WT and TSP2 KO ECM did not reveal differences in stiffness. In contrast, reduced VWF accumulation on TSP2 KO ECM was observed when matrices were subjected to plasma under physiological flow. AFM utilizing VWF-coated 2-µm beads confirmed the weak binding to TSP2 KO ECM, providing a mechanistic explanation for the lack of thrombus formation. Therefore, our studies show that ECM assembly is critical for interaction of collagen with VWF and subsequent thrombogenic responses.


Assuntos
Plaquetas/patologia , Adesão Celular/fisiologia , Fibroblastos/patologia , Trombose/patologia , Trombospondinas/fisiologia , Fator de von Willebrand/metabolismo , Animais , Plaquetas/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Hemostasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Adesividade Plaquetária , Trombose/metabolismo
14.
Physiology (Bethesda) ; 31(1): 7-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26661524

RESUMO

Advancements in biomaterial science and available cell sources have spurred the translation of tissue-engineering technology to the bedside, addressing the pressing clinical demands for replacement cardiovascular tissues. Here, the in vivo status of tissue-engineered blood vessels, heart valves, and myocardium is briefly reviewed, illustrating progress toward a tissue-engineered heart for clinical use.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Sistema Cardiovascular/fisiopatologia , Engenharia Tecidual , Animais , Humanos
15.
J Vasc Surg ; 66(1): 243-250, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27687327

RESUMO

OBJECTIVE: Bioresorbable vascular grafts are biologically active grafts that are entirely reconstituted by host-derived cells through an inflammation-mediated degradation process. Calcification is a detrimental condition that can severely affect graft performance. Therefore, prevention of calcification is of great importance to the success of bioresorbable arterial vascular grafts. The objective of this study was to test whether fast-degrading (FD) bioresorbable arterial grafts with high cellular infiltration will inhibit calcification of grafts. METHODS: We created two versions of bioresorbable arterial vascular grafts, slow-degrading (SD) grafts and FD grafts. Both grafts had the same inner layer composed of a 50:50 poly(l-lactic-co-ε-caprolactone) copolymer scaffold. However, the outer layer of SD grafts was composed of poly(l-lactic acid) nanofiber, whereas the outer layer of FD grafts was composed of a combination of poly(l-lactic acid) and polyglycolic acid nanofiber. Both grafts were implanted in 8- to 10-week-old female mice (n = 15 in the SD group, n = 10 in the FD group) as infrarenal aortic interposition conduits. Animals were observed for 8 weeks. RESULTS: von Kossa staining showed calcification in 7 of 12 grafts in the SD group but zero in the FD group (P < .01, χ2 test). The cell number in the outer layer of FD grafts was significantly higher than in the SD grafts (SD, 0.87 ± 0.65 × 103/mm2; FD, 2.65 ± 1.91 × 103/mm2; P = .02). CONCLUSIONS: The FD bioresorbable arterial vascular graft with high cellular infiltration into the scaffold inhibited calcification of grafts.


Assuntos
Implantes Absorvíveis , Aorta Abdominal/cirurgia , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Calcificação Vascular/prevenção & controle , Animais , Aorta Abdominal/patologia , Implante de Prótese Vascular/efeitos adversos , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica , Ácido Láctico/química , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Nanofibras , Osteogênese/genética , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Desenho de Prótese , Fatores de Tempo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
16.
FASEB J ; 30(7): 2627-36, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27059717

RESUMO

Stenosis is a critical problem in the long-term efficacy of tissue-engineered vascular grafts (TEVGs). We previously showed that host monocyte infiltration and activation within the graft drives stenosis and that TGF-ß receptor 1 (TGF-ßR1) inhibition can prevent it, but the latter effect was attributed primarily to inhibition of mesenchymal cell expansion. In this study, we assessed the effects of TGF-ßR1 inhibition on the host monocytes. Biodegradable TEVGs were implanted as inferior vena cava interposition conduits in 2 groups of C57BL/6 mice (n = 25/group): unseeded grafts and unseeded grafts with TGF-ßR1 inhibitor systemic treatment for the first 2 wk. The TGF-ßR1 inhibitor treatment effectively improved TEVG patency at 6 mo compared to the untreated control group (91.7 vs. 48%, P < 0.001), which is associated with a reduction in classic activation of mononuclear phagocytes. Consistent with these findings, the addition of rTGF-ß to LPS/IFN-γ-stimulated monocytes enhanced secretion of inflammatory cytokines TNF-α, IL-12, and IL-6; this effect was blocked by TGF-ßR1 inhibition (P < 0.0001). These findings suggest that the TGF-ß signaling pathway contributes to TEVG stenosis by inducing classic activation of host monocytes. Furthermore, blocking monocyte activation by TGF-ßR1 inhibition provides a viable strategy for preventing TEVG stenosis while maintaining neotissue formation.-Lee, Y.-U., de Dios Ruiz-Rosado, J., Mahler, N., Best, C. A., Tara, S., Yi, T., Shoji, T., Sugiura, T., Lee, A. Y., Robledo-Avila, F., Hibino, N., Pober, J. S., Shinoka, T., Partida-Sanchez, S., Breuer, C. K. TGF-ß receptor 1 inhibition prevents stenosis of tissue-engineered vascular grafts by reducing host mononuclear phagocyte activation.


Assuntos
Leucócitos Mononucleares/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Prótese Vascular , Constrição Patológica , Citocinas/genética , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Fatores de Crescimento Transformadores beta/genética , Engenharia Tecidual , Alicerces Teciduais
17.
J Biomech Eng ; 139(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28886204

RESUMO

Continuing advances in the fabrication of scaffolds for tissue-engineered vascular grafts (TEVGs) are greatly expanding the scope of potential designs. Increasing recognition of the importance of local biomechanical cues for cell-mediated neotissue formation, neovessel growth, and subsequent remodeling is similarly influencing the design process. This study examines directly the potential effects of different combinations of key geometric and material properties of polymeric scaffolds on the initial mechanical state of an implanted graft into which cells are seeded or migrate. Toward this end, we developed a bilayered computational model that accounts for layer-specific thickness and stiffness as well as the potential to be residually stressed during fabrication or to swell during implantation. We found that, for realistic ranges of parameter values, the circumferential stress that would be presented to seeded or infiltrating cells is typically much lower than ideal, often by an order of magnitude. Indeed, accounting for layer-specific intrinsic swelling resulting from hydrophilicity or residual stresses not relieved via annealing revealed potentially large compressive stresses, which could lead to unintended cell phenotypes and associated maladaptive growth or, in extreme cases, graft failure. Metrics of global hemodynamics were also found to be inversely related to markers of a favorable local mechanobiological environment, suggesting a tradeoff in designs that seek mechanical homeostasis at a single scale. These findings highlight the importance of the initial mechanical state in tissue engineering scaffold design and the utility of computational modeling in reducing the experimental search space for future graft development and testing.


Assuntos
Desenho de Prótese , Estresse Mecânico , Engenharia Tecidual , Alicerces Teciduais , Enxerto Vascular , Resistência ao Cisalhamento
18.
FASEB J ; 29(6): 2431-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25713026

RESUMO

The first clinical trial of tissue-engineered vascular grafts (TEVGs) identified stenosis as the primary cause of graft failure. In this study, we aimed to elucidate the role of the host immune response in the development of stenosis using a murine model of TEVG implantation. We found that the C.B-17 wild-type (WT) mouse (control) undergoes a dramatic stenotic response, which is nearly completely abolished in the immunodeficient SCID/beige (bg) variant. SCID mice, which lack an adaptive immune system due to the absence of T and B lymphocytes, experienced rates of stenosis comparable to WT controls (average luminal diameter, WT: 0.071 ± 0.035 mm, SCID: 0.137 ± 0.032 mm, SCID/bg: 0.804 ± 0.039 mm; P < 0.001). The bg mutation is characterized by NK cell and platelet dysfunction, and systemic treatment of WT mice with either NK cell-neutralizing (anti-NK 1.1 antibody) or antiplatelet (aspirin/Plavix [clopidogrel bisulfate]; Asp/Pla) therapy achieved nearly half the patency observed in the SCID/bg mouse (NK Ab: 0.356 ± 0.151 mm, Asp/Pla: 0.452 ± 0.130 mm). Scaffold implantation elicited a blunted immune response in SCID/bg mice, as demonstrated by macrophage number and mRNA expression of proinflammatory cytokines in TEVG explants. Implicating the initial innate immune response as a critical factor in graft stenosis may provide a strategy for prognosis and therapy of second-generation TEVGs.


Assuntos
Imunidade Adaptativa/imunologia , Implante de Prótese Vascular/normas , Prótese Vascular/normas , Imunidade Inata/imunologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Plaquetas/imunologia , Plaquetas/metabolismo , Prótese Vascular/efeitos adversos , Implante de Prótese Vascular/efeitos adversos , Constrição Patológica/etiologia , Constrição Patológica/imunologia , Citocinas/genética , Citocinas/imunologia , Feminino , Expressão Gênica/imunologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imuno-Histoquímica , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 35(9): 2003-10, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26183618

RESUMO

OBJECTIVE: Despite successful translation of bioresorbable vascular grafts for the repair of congenital heart disease, stenosis remains the primary cause of graft failure. In this study, we investigated the efficacy of long-term treatment with the antiplatelet drugs, aspirin and cilostazol, in preventing stenosis and evaluated the effect of these drugs on the acute phase of inflammation and tissue remodeling. APPROACH AND RESULTS: C57BL/6 mice were fed a drug-mixed diet of aspirin, cilostazol, or normal chow during the course of follow-up. Bioresorbable vascular grafts, composed of poly(glycolic acid) mesh sealed with poly(l-lactide-co-ε-caprolactone), were implanted as inferior vena cava interposition conduits and followed up for 2 weeks (n=10 per group) or 24 weeks (n=15 per group). Both aspirin and cilostazol suppressed platelet activation and attachment onto the grafts. On explant at 24 weeks, well-organized neotissue had developed, and cilostazol treatment resulted in 100% graft patency followed by the aspirin (67%) and no-treatment (60%) groups (P<0.05). Wall thickness and smooth muscle cell proliferation in the neotissue of the cilostazol group were decreased when compared with that of the no-treatment group at 24 weeks. In addition, cilostazol was shown to have an anti-inflammatory effect on neotissue at 2 weeks by regulating the recruitment and activation of monocytes. CONCLUSIONS: Cilostazol prevents stenosis of bioresorbable vascular graft in a mouse inferior vena cava implantation model up to 24 weeks and is accompanied by reduction of smooth muscle cell proliferation and acute inflammation.


Assuntos
Implantes Absorvíveis , Prótese Vascular , Oclusão de Enxerto Vascular/prevenção & controle , Insuficiência Cardíaca/cirurgia , Tetrazóis/farmacologia , Remodelação Vascular/efeitos dos fármacos , Veia Cava Inferior/cirurgia , Animais , Aspirina/farmacologia , Proliferação de Células , Cilostazol , Modelos Animais de Doenças , Técnica de Fontan/métodos , Oclusão de Enxerto Vascular/patologia , Insuficiência Cardíaca/patologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Agregação Plaquetária/farmacologia , Falha de Prótese , Resultado do Tratamento
20.
J Vasc Surg ; 62(3): 734-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24745941

RESUMO

OBJECTIVE: Autologous grafts are used to repair atherosclerotic cardiovascular diseases; however, many patients lack suitable donor graft tissue. Recently, tissue engineering techniques have emerged to make biologically active blood vessels. We applied this technique to produce arterial grafts using established biodegradable materials without cell seeding. The grafts were evaluated in vivo for vessel remodeling during 12 months. METHODS: Poly(L-lactide-co-ε-caprolactone) scaffolds reinforced by poly(lactic acid) (PLA) fiber were prepared as arterial grafts. Twenty-eight cell-free grafts were implanted as infrarenal aortic interposition grafts in 8-week-old female SCID/Bg mice. Serial ultrasound and micro computed tomography angiography were used to monitor grafts after implantation. Five grafts were harvested for histologic assessments and reverse transcription-quantitative polymerase chain reaction analysis at time points ranging from 4 months to 1 year after implantation. RESULTS: Micro computed tomography indicated that most implanted mice displayed aneurysmal changes (three of five mice at 4 months, four of five mice at 8 months, and two of five mice at 12 months). Histologic assessments demonstrated extensive tissue remodeling leading to the development of well-circumscribed neovessels with an endothelial inner lining, a neointima containing smooth muscle cells and elastin, and a collagen-rich extracellular matrix. There were a few observed calcified deposits, located around residual PLA fibers at 12 months after implantation. Macrophage infiltration into the scaffold, as evaluated by F4/80 immunohistochemical staining, remained after 12 months and was focused mostly around residual PLA fibers. Reverse transcription-quantitative polymerase chain reaction analysis revealed that gene expression of Itgam, a marker for macrophages, and of matrix metalloproteinase 9 was higher than in native aorta during the course of 12 months, indicating prolonged inflammation (Itgam at 8 months: 11.75 ± 0.99 vs native aorta, P < .01; matrix metalloproteinase 9 at 4 months: 4.35 ± 3.05 vs native aorta, P < .05). CONCLUSIONS: In this study, we demonstrated well-organized neotissue of cell-free biodegradable arterial grafts. Although most grafts experienced aneurysmal change, such findings provide insight into the process of tissue-engineered vascular graft remodeling and should allow informed rational design of the next generation of arterial grafts.


Assuntos
Aorta/cirurgia , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Engenharia Tecidual/métodos , Remodelação Vascular , Animais , Aorta/diagnóstico por imagem , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Aortografia/métodos , Feminino , Regulação da Expressão Gênica , Ácido Láctico/química , Camundongos SCID , Poliésteres/química , Polímeros/química , Desenho de Prótese , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Ultrassonografia Doppler , Grau de Desobstrução Vascular , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA