Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.188
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 38: 1-23, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759800

RESUMO

The microtubule (MT) cytoskeleton provides the architecture that governs intracellular organization and the regulated motion of macromolecules through the crowded cytoplasm. The key to establishing a functioning cytoskeletal architecture is regulating when and where new MTs are nucleated. Within the spindle, the vast majority of MTs are generated through a pathway known as branching MT nucleation, which exponentially amplifies MT number in a polar manner. Whereas other MT nucleation pathways generally require a complex organelle such as the centrosome or Golgi apparatus to localize nucleation factors, the branching site is based solely on a simple, preformed MT, making it an ideal system to study MT nucleation. In this review, we address recent developments in characterizing branching factors, the branching reaction, and its regulation, as well as branching MT nucleation in systems beyond the spindle and within human disease.


Assuntos
Centro Organizador dos Microtúbulos , Fuso Acromático , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
2.
Cell ; 179(6): 1330-1341.e13, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761532

RESUMO

Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.


Assuntos
Cromossomos Humanos/genética , Elementos Facilitadores Genéticos , Amplificação de Genes , Oncogenes , Acetilação , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cromatina/metabolismo , DNA de Neoplasias/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genes Neoplásicos , Loci Gênicos , Glioblastoma/genética , Glioblastoma/patologia , Histonas/metabolismo , Humanos , Neuroglia/metabolismo
3.
Immunity ; 56(8): 1844-1861.e6, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478855

RESUMO

Obesity is a major risk factor for psoriasis, but how obesity disrupts the regulatory mechanisms that keep skin inflammation in check is unclear. Here, we found that skin was enriched with a unique population of CD4+Foxp3+ regulatory T (Treg) cells expressing the nuclear receptor peroxisome proliferation-activated receptor gamma (PPARγ). PPARγ drove a distinctive transcriptional program and functional suppression of IL-17A+ γδ T cell-mediated psoriatic inflammation. Diet-induced obesity, however, resulted in a reduction of PPARγ+ skin Treg cells and a corresponding loss of control over IL-17A+ γδ T cell-mediated inflammation. Mechanistically, PPARγ+ skin Treg cells preferentially took up elevated levels of long-chain free fatty acids in obese mice, which led to cellular lipotoxicity, oxidative stress, and mitochondrial dysfunction. Harnessing the anti-inflammatory properties of these PPARγ+ skin Treg cells could have therapeutic potential for obesity-associated inflammatory skin diseases.


Assuntos
Psoríase , Linfócitos T Reguladores , Animais , Camundongos , PPAR gama , Interleucina-17 , Pele , Psoríase/induzido quimicamente , Inflamação , Obesidade
4.
Cell ; 169(2): 301-313.e11, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366204

RESUMO

Receptor-interacting protein kinase-3 (RIPK3) is an activator of necroptotic cell death, but recent work has implicated additional roles for RIPK3 in inflammatory signaling independent of cell death. However, while necroptosis has been shown to contribute to antiviral immunity, death-independent roles for RIPK3 in host defense have not been demonstrated. Using a mouse model of West Nile virus (WNV) encephalitis, we show that RIPK3 restricts WNV pathogenesis independently of cell death. Ripk3-/- mice exhibited enhanced mortality compared to wild-type (WT) controls, while mice lacking the necroptotic effector MLKL, or both MLKL and caspase-8, were unaffected. The enhanced susceptibility of Ripk3-/- mice arose from suppressed neuronal chemokine expression and decreased central nervous system (CNS) recruitment of T lymphocytes and inflammatory myeloid cells, while peripheral immunity remained intact. These data identify pleiotropic functions for RIPK3 in the restriction of viral pathogenesis and implicate RIPK3 as a key coordinator of immune responses within the CNS.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Quimiocinas/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Neurônios/metabolismo
5.
Genes Dev ; 35(7-8): 512-527, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766982

RESUMO

Epithelioid hemangioendothelioma (EHE) is a genetically homogenous vascular sarcoma that is a paradigm for TAZ dysregulation in cancer. EHE harbors a WWTR1(TAZ)-CAMTA1 gene fusion in >90% of cases, 45% of which have no other genetic alterations. In this study, we used a first of its kind approach to target the Wwtr1-Camta1 gene fusion to the Wwtr1 locus, to develop a conditional EHE mouse model whereby Wwtr1-Camta1 is controlled by the endogenous transcriptional regulators upon Cre activation. These mice develop EHE tumors that are indistinguishable from human EHE clinically, histologically, immunohistochemically, and genetically. Overall, these results demonstrate unequivocally that TAZ-CAMTA1 is sufficient to drive EHE formation with exquisite specificity, as no other tumor types were observed. Furthermore, we fully credential this unique EHE mouse model as a valid preclinical model for understanding the role of TAZ dysregulation in cancer formation and for testing therapies directed at TAZ-CAMTA1, TAZ, and YAP/TAZ signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/genética , Modelos Animais de Doenças , Fusão Gênica , Hemangioendotelioma Epitelioide/genética , Hemangioendotelioma Epitelioide/patologia , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Humanos , Camundongos , Transdução de Sinais/genética , Transativadores/genética
6.
Immunity ; 51(4): 625-637.e3, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31564469

RESUMO

Preventing aberrant immune responses against the microbiota is essential for the health of the host. Microbiota-shed pathogen-associated molecular patterns translocate from the gut lumen into systemic circulation. Here, we examined the role of hemolymph (insect blood) filtration in regulating systemic responses to microbiota-derived peptidoglycan. Drosophila deficient for the transcription factor Klf15 (Klf15NN) are viable but lack nephrocytes-cells structurally and functionally homologous to the glomerular podocytes of the kidney. We found that Klf15NN flies were more resistant to infection than wild-type (WT) counterparts but exhibited a shortened lifespan. This was associated with constitutive Toll pathway activation triggered by excess peptidoglycan circulating in Klf15NN flies. In WT flies, peptidoglycan was removed from systemic circulation by nephrocytes through endocytosis and subsequent lysosomal degradation. Thus, renal filtration of microbiota-derived peptidoglycan maintains immune homeostasis in Drosophila, a function likely conserved in mammals and potentially relevant to the chronic immune activation seen in settings of impaired blood filtration.


Assuntos
Infecções Bacterianas/imunologia , Tecido Conjuntivo/fisiologia , Drosophila/fisiologia , Glomérulos Renais/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , Podócitos/fisiologia , Animais , Animais Geneticamente Modificados , Secreções Corporais , Proteínas de Drosophila/metabolismo , Endocitose , Homeostase , Imunidade Inata , Mamíferos , Microbiota , Receptores Toll-Like/metabolismo
7.
Immunity ; 50(1): 64-76.e4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635240

RESUMO

As long-lived post-mitotic cells, neurons employ unique strategies to resist pathogen infection while preserving cellular function. Here, using a murine model of Zika virus (ZIKV) infection, we identified an innate immune pathway that restricts ZIKV replication in neurons and is required for survival upon ZIKV infection of the central nervous system (CNS). We found that neuronal ZIKV infection activated the nucleotide sensor ZBP1 and the kinases RIPK1 and RIPK3, core components of virus-induced necroptotic cell death signaling. However, activation of this pathway in ZIKV-infected neurons did not induce cell death. Rather, RIPK signaling restricted viral replication by altering cellular metabolism via upregulation of the enzyme IRG1 and production of the metabolite itaconate. Itaconate inhibited the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes. These findings demonstrate an immunometabolic mechanism of viral restriction during neuroinvasive infection.


Assuntos
Glicoproteínas/metabolismo , Hidroliases/metabolismo , Neurônios/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Animais , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Glicoproteínas/genética , Humanos , Hidroliases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroproteção , RNA Viral/imunologia , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Succinato Desidrogenase/metabolismo , Succinatos/metabolismo , Replicação Viral
8.
Cell ; 155(2): 397-409, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120138

RESUMO

The pyruvate kinase M2 isoform (PKM2) is expressed in cancer and plays a role in regulating anabolic metabolism. To determine whether PKM2 is required for tumor formation or growth, we generated mice with a conditional allele that abolishes PKM2 expression without disrupting PKM1 expression. PKM2 deletion accelerated mammary tumor formation in a Brca1-loss-driven model of breast cancer. PKM2 null tumors displayed heterogeneous PKM1 expression, with PKM1 found in nonproliferating tumor cells and no detectable pyruvate kinase expression in proliferating cells. This suggests that PKM2 is not necessary for tumor cell proliferation and implies that the inactive state of PKM2 is associated with the proliferating cell population within tumors, whereas nonproliferating tumor cells require active pyruvate kinase. Consistent with these findings, variable PKM2 expression and heterozygous PKM2 mutations are found in human tumors. These data suggest that regulation of PKM2 activity supports the different metabolic requirements of proliferating and nonproliferating tumor cells.


Assuntos
Neoplasias da Mama/metabolismo , Deleção de Genes , Neoplasias Mamárias Experimentais/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Animais , Sequência de Bases , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Éxons , Feminino , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Metástase Neoplásica , Transplante de Neoplasias , Splicing de RNA
9.
Cell ; 155(2): 462-77, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120142

RESUMO

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Neoplasias Encefálicas/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/metabolismo , Humanos , Masculino , Mutação , Proteoma/análise , Transdução de Sinais
10.
Trends Biochem Sci ; 48(5): 450-462, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36709077

RESUMO

The Hippo signaling pathway inhibits the activity of the oncogenic YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex. In cancers, inactivating mutations in upstream Hippo components and/or enhanced activity of YAP/TAZ and TEAD have been observed. The activity of this transcriptional complex can be effectively inhibited by targeting the TEAD family of transcription factors. The development of TEAD inhibitors has been driven by the discovery that TEAD has druggable hydrophobic pockets, and is currently at the clinical development stage. Three small molecule TEAD inhibitors are currently being tested in Phase I clinical trials. In this review, we highlight the role of TEADs in cancer, discuss various avenues through which TEAD activity can be inhibited, and outline the opportunities for the administration of TEAD inhibitors.


Assuntos
Neoplasias , Fatores de Transcrição de Domínio TEA , Humanos , Fatores de Transcrição/metabolismo , Neoplasias/tratamento farmacológico , Via de Sinalização Hippo
11.
N Engl J Med ; 390(10): 889-899, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38407394

RESUMO

BACKGROUND: Food allergies are common and are associated with substantial morbidity; the only approved treatment is oral immunotherapy for peanut allergy. METHODS: In this trial, we assessed whether omalizumab, a monoclonal anti-IgE antibody, would be effective and safe as monotherapy in patients with multiple food allergies. Persons 1 to 55 years of age who were allergic to peanuts and at least two other trial-specified foods (cashew, milk, egg, walnut, wheat, and hazelnut) were screened. Inclusion required a reaction to a food challenge of 100 mg or less of peanut protein and 300 mg or less of the two other foods. Participants were randomly assigned, in a 2:1 ratio, to receive omalizumab or placebo administered subcutaneously (with the dose based on weight and IgE levels) every 2 to 4 weeks for 16 to 20 weeks, after which the challenges were repeated. The primary end point was ingestion of peanut protein in a single dose of 600 mg or more without dose-limiting symptoms. The three key secondary end points were the consumption of cashew, of milk, and of egg in single doses of at least 1000 mg each without dose-limiting symptoms. The first 60 participants (59 of whom were children or adolescents) who completed this first stage were enrolled in a 24-week open-label extension. RESULTS: Of the 462 persons who were screened, 180 underwent randomization. The analysis population consisted of the 177 children and adolescents (1 to 17 years of age). A total of 79 of the 118 participants (67%) receiving omalizumab met the primary end-point criteria, as compared with 4 of the 59 participants (7%) receiving placebo (P<0.001). Results for the key secondary end points were consistent with those of the primary end point (cashew, 41% vs. 3%; milk, 66% vs. 10%; egg, 67% vs. 0%; P<0.001 for all comparisons). Safety end points did not differ between the groups, aside from more injection-site reactions in the omalizumab group. CONCLUSIONS: In persons as young as 1 year of age with multiple food allergies, omalizumab treatment for 16 weeks was superior to placebo in increasing the reaction threshold for peanut and other common food allergens. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT03881696.).


Assuntos
Antialérgicos , Dessensibilização Imunológica , Hipersensibilidade Alimentar , Omalizumab , Adolescente , Criança , Humanos , Lactente , Alérgenos/efeitos adversos , Arachis/efeitos adversos , Dessensibilização Imunológica/métodos , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/tratamento farmacológico , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/terapia , Omalizumab/efeitos adversos , Omalizumab/uso terapêutico , Hipersensibilidade a Amendoim/tratamento farmacológico , Hipersensibilidade a Amendoim/imunologia , Hipersensibilidade a Amendoim/terapia , Antialérgicos/administração & dosagem , Antialérgicos/uso terapêutico , Pré-Escolar , Adulto Jovem , Adulto , Pessoa de Meia-Idade
12.
Immunity ; 48(2): 380-395.e6, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29426702

RESUMO

Individual reports suggest that the central nervous system (CNS) contains multiple immune cell types with diverse roles in tissue homeostasis, immune defense, and neurological diseases. It has been challenging to map leukocytes across the entire brain, and in particular in pathology, where phenotypic changes and influx of blood-derived cells prevent a clear distinction between reactive leukocyte populations. Here, we applied high-dimensional single-cell mass and fluorescence cytometry, in parallel with genetic fate mapping systems, to identify, locate, and characterize multiple distinct immune populations within the mammalian CNS. Using this approach, we revealed that microglia, several subsets of border-associated macrophages and dendritic cells coexist in the CNS at steady state and exhibit disease-specific transformations in the immune microenvironment during aging and in models of Alzheimer's disease and multiple sclerosis. Together, these data and the described framework provide a resource for the study of disease mechanisms, potential biomarkers, and therapeutic targets in CNS disease.


Assuntos
Envelhecimento/imunologia , Sistema Nervoso Central/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Animais , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/imunologia , Análise de Célula Única
13.
PLoS Biol ; 22(5): e3002627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758732

RESUMO

The relationship between genetic code robustness and protein evolvability is unknown. A new study in PLOS Biology using in silico rewiring of genetic codes and functional protein data identified a positive correlation between code robustness and protein evolvability that is protein-specific.


Assuntos
Evolução Molecular , Código Genético , Proteínas , Proteínas/genética , Proteínas/metabolismo , Modelos Genéticos
14.
Cell ; 151(5): 1083-96, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178125

RESUMO

The origins and developmental mechanisms of coronary arteries are incompletely understood. We show here by fate mapping, clonal analysis, and immunohistochemistry that endocardial cells generate the endothelium of coronary arteries. Dye tracking, live imaging, and tissue transplantation also revealed that ventricular endocardial cells are not terminally differentiated; instead, they are angiogenic and form coronary endothelial networks. Myocardial Vegf-a or endocardial Vegfr-2 deletion inhibited coronary angiogenesis and arterial formation by ventricular endocardial cells. In contrast, lineage and knockout studies showed that endocardial cells make a small contribution to the coronary veins, the formation of which is independent of myocardial-to-endocardial Vegf signaling. Thus, contrary to the current view of a common source for the coronary vessels, our findings indicate that the coronary arteries and veins have distinct origins and are formed by different mechanisms. This information may help develop better cell therapies for coronary artery disease.


Assuntos
Vasos Coronários/embriologia , Células Endoteliais/citologia , Miocárdio/citologia , Neovascularização Fisiológica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Diferenciação Celular , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Camundongos , Miocárdio/metabolismo , Fatores de Transcrição NFATC/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(6): e2317461121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289961

RESUMO

Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes of Arabidopsis thaliana from Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism in CBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes of CBF2 on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes of CBF2 to their genetic background ecotypes. The effects of CBF2 were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreign CBF2 genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed that CBF2 encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Mutação , Aclimatação/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição/genética , Temperatura Baixa , Aptidão Genética
16.
Proc Natl Acad Sci U S A ; 121(3): e2314514121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190524

RESUMO

Gram-negative bacterial bloodstream infections (GNB-BSI) are common and frequently lethal. Despite appropriate antibiotic treatment, relapse of GNB-BSI with the same bacterial strain is common and associated with poor clinical outcomes and high healthcare costs. The role of persister cells, which are sub-populations of bacteria that survive for prolonged periods in the presence of bactericidal antibiotics, in relapse of GNB-BSI is unclear. Using a cohort of patients with relapsed GNB-BSI, we aimed to determine how the pathogen evolves within the patient between the initial and subsequent episodes of GNB-BSI and how these changes impact persistence. Using Escherichia coli clinical bloodstream isolate pairs (initial and relapse isolates) from patients with relapsed GNB-BSI, we found that 4/11 (36%) of the relapse isolates displayed a significant increase in persisters cells relative to the initial bloodstream infection isolate. In the relapsed E. coli strain with the greatest increase in persisters (100-fold relative to initial isolate), we determined that the increase was due to a loss-of-function mutation in the ptsI gene encoding Enzyme I of the phosphoenolpyruvate phosphotransferase system. The ptsI mutant was equally virulent in a murine bacteremia infection model but exhibited 10-fold increased survival to antibiotic treatment. This work addresses the controversy regarding the clinical relevance of persister formation by providing compelling data that not only do high-persister mutations arise during bloodstream infection in humans but also that these mutants display increased survival to antibiotic challenge in vivo.


Assuntos
Bacteriemia , Sepse , Humanos , Animais , Camundongos , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Recidiva
17.
Proc Natl Acad Sci U S A ; 121(15): e2309636121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38573964

RESUMO

Rates of microbial processes are fundamental to understanding the significance of microbial impacts on environmental chemical cycling. However, it is often difficult to quantify rates or to link processes to specific taxa or individual cells, especially in environments where there are few cultured representatives with known physiology. Here, we describe the use of the redox-enzyme-sensitive molecular probe RedoxSensor™ Green to measure rates of anaerobic electron transfer physiology (i.e., sulfate reduction and methanogenesis) in individual cells and link those measurements to genomic sequencing of the same single cells. We used this method to investigate microbial activity in hot, anoxic, low-biomass (~103 cells mL-1) groundwater of the Death Valley Regional Flow System, California. Combining this method with electron donor amendment experiments and metatranscriptomics confirmed that the abundant spore formers including Candidatus Desulforudis audaxviator were actively reducing sulfate in this environment, most likely with acetate and hydrogen as electron donors. Using this approach, we measured environmental sulfate reduction rates at 0.14 to 26.9 fmol cell-1 h-1. Scaled to volume, this equates to a bulk environmental rate of ~103 pmol sulfate L-1 d-1, similar to potential rates determined with radiotracer methods. Despite methane in the system, there was no evidence for active microbial methanogenesis at the time of sampling. Overall, this method is a powerful tool for estimating species-resolved, single-cell rates of anaerobic metabolism in low-biomass environments while simultaneously linking genomes to phenomes at the single-cell level. We reveal active elemental cycling conducted by several species, with a large portion attributable to Ca. Desulforudis audaxviator.


Assuntos
Ecossistema , Meio Ambiente , Transporte de Elétrons , Sulfatos/química , Respiração Celular
18.
Development ; 150(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37350382

RESUMO

Retinoic acid (RA) is the proposed mammalian 'meiosis inducing substance'. However, evidence for this role comes from studies in the fetal ovary, where germ cell differentiation and meiotic initiation are temporally inseparable. In the postnatal testis, these events are separated by more than 1 week. Exploiting this difference, we discovered that, although RA is required for spermatogonial differentiation, it is dispensable for the subsequent initiation, progression and completion of meiosis. Indeed, in the absence of RA, the meiotic transcriptome program in both differentiating spermatogonia and spermatocytes entering meiosis was largely unaffected. Instead, transcripts encoding factors required during spermiogenesis were aberrant during preleptonema, and the subsequent spermatid morphogenesis program was disrupted such that no sperm were produced. Taken together, these data reveal a RA-independent model for male meiotic initiation.


Assuntos
Testículo , Tretinoína , Animais , Feminino , Masculino , Tretinoína/farmacologia , Espermatogênese/genética , Espermatogônias , Espermatozoides , Meiose/genética , Mamíferos
19.
Annu Rev Microbiol ; 75: 129-149, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314594

RESUMO

The amount of bacterial and archaeal genome sequence and methylome data has greatly increased over the last decade, enabling new insights into the functional roles of DNA methylation in these organisms. Methyltransferases (MTases), the enzymes responsible for DNA methylation, are exchanged between prokaryotes through horizontal gene transfer and can function either as part of restriction-modification systems or in apparent isolation as single (orphan) genes. The patterns of DNA methylation they confer on the host chromosome can have significant effects on gene expression, DNA replication, and other cellular processes. Some processes require very stable patterns of methylation, resulting in conservation of persistent MTases in a particular lineage. Other processes require patterns that are more dynamic yet more predictable than what is afforded by horizontal gene transfer and gene loss, resulting in phase-variable or recombination-driven MTase alleles. In this review, we discuss what is currently known about the functions of DNA methylation in prokaryotes in light of these evolutionary patterns.


Assuntos
Metilação de DNA , Epigenômica , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Células Procarióticas/metabolismo
20.
Circ Res ; 134(6): 659-674, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484028

RESUMO

Circadian rhythms in physiology and behavior are ≈24-hour biological cycles regulated by internal biological clocks (ie, circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. These clocks are present in virtually all cells in the body, including cardiomyocytes. Many decades ago, clinicians and researchers became interested in studying daily patterns of triggers for sudden cardiac death, the incidence of sudden cardiac death, and cardiac arrhythmias. This review highlights historical and contemporary studies examining the role of day/night rhythms in the timing of cardiovascular events, delves into changes in the timing of these events over the last few decades, and discusses cardiovascular disease-specific differences in the timing of cardiovascular events. The current understanding of the environmental, behavioral, and circadian mechanisms that regulate cardiac electrophysiology is examined with a focus on the circadian regulation of cardiac ion channels and ion channel regulatory genes. Understanding the contribution of environmental, behavioral, and circadian rhythms on arrhythmia susceptibility and the incidence of sudden cardiac death will be essential in developing future chronotherapies.


Assuntos
Arritmias Cardíacas , Relógios Circadianos , Humanos , Ritmo Circadiano , Miócitos Cardíacos , Morte Súbita Cardíaca/etiologia , Eletrofisiologia Cardíaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA