Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(46): 22915-22917, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659034

RESUMO

Transposable elements are one of the major contributors to genome-size differences in metazoans. Despite this, relatively little is known about the evolutionary patterns of element expansions and the element families involved. Here we report a broad genomic sampling within the genus Hydra, a freshwater cnidarian at the focal point of diverse research in regeneration, symbiosis, biogeography, and aging. We find that the genome of Hydra is the result of an expansion event involving long interspersed nuclear elements and in particular a single family of the chicken repeat 1 (CR1) class. This expansion is unique to a subgroup of the genus Hydra, the brown hydras, and is absent in the green hydra, which has a repeat landscape similar to that of other cnidarians. These features of the genome make Hydra attractive for studies of transposon-driven genome expansions and speciation.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Hydra/genética , Animais , Tamanho do Genoma , Hydra/classificação , Filogenia
2.
PLoS One ; 7(2): e31643, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22328943

RESUMO

Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp) that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.


Assuntos
Evolução Biológica , Cnidários/genética , Transferência Genética Horizontal/genética , Animais , Cnidários/classificação , Genoma/genética , Filogenia
3.
Integr Comp Biol ; 45(4): 605-14, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21676807

RESUMO

Studies of environmental signaling in animals have focused primarily on organisms with relatively constrained responses, both temporally and phenotypically. In this regard, existing model animals (e.g., "worms and flies") are particularly extreme. Such animals have relatively little capacity to alter their morphology in response to environmental signals. Hence, they exhibit little phenotypic plasticity. On the other hand, basal metazoans exhibit relatively unconstrained responses to environmental signals and may thus provide more general insight, insofar as these constraints are likely traits derived during animal evolution. Such enhanced phenotypic plasticity may result from greater sensitivity to environmental signals, or greater abundance of suitable target cells, or both. Examination of what is known of the components of environmental signaling pathways in cnidarians reveals many similarities to well-studied model animals. In addition to these elements, however, macroscopic basal metazoans (e.g., sponges and cnidarians) typically exhibit a system-level capability for integrating environmental information. In cnidarians, the gastrovascular system acts in this fashion, generating local patterns of signaling (e.g., pressure, shear, and reactive oxygen species) via its organism-wide functioning. Contractile regions of tissue containing concentrations of mitochondrion-rich, epitheliomuscular cells may be particularly important in this regard, serving in both a functional and a signaling context. While the evolution of animal circulatory systems is usually considered in terms of alleviating surface-to-volume constraints, such systems also have the advantage of enhancing the capacity of larger organisms to respond quickly and efficiently to environmental signals. More general features of animals that correlate with relatively unconstrained responses to environmental signals (e.g., active stem cells at all stages of the life cycle) are also enumerated and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA