Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Chem Rev ; 123(8): 4635-4662, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36917618

RESUMO

This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.

2.
Environ Sci Technol ; 54(7): 4664-4674, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32108464

RESUMO

Herein, the novel application of FeS2/C nanocomposite as a highly active, stable, and recyclable catalyst for heterogeneous electro-Fenton (EF) treatment of organic water pollutants is discussed. The simultaneous carbonization and sulfidation of an iron-based metal-organic framework (MOF) yielded well-dispersed pyrite FeS2 nanoparticles of ∼100 nm diameter linked to porous carbon. XPS analysis revealed the presence of doping N atoms. EF treatment with an IrO2/air-diffusion cell ensured the complete removal of the antidepressant fluoxetine spiked into urban wastewater at near-neutral pH after 60 min at 50 mA with 0.4 g L-1 catalyst as optimum dose. The clear enhancement of catalytic activity and stability of the material as compared to natural pyrite was evidenced, as deduced from its characterization before and after use. The final solutions contained <1.5 mg L-1 dissolved iron and became progressively acidified. Fluorescence excitation-emission spectroscopy with parallel factor analysis demonstrated the large mineralization of all wastewater components at 6 h, which was accompanied by a substantial decrease of toxicity. A mechanism with •OH as the dominant oxidant was proposed: FeS2 core-shell nanoparticles served as Fe2+ shuttles for homogeneous Fenton's reaction and provided active sites for the heterogeneous Fenton process, whereas nanoporous carbon allowed minimizing the mass transport limitations.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Águas Residuárias
3.
J Environ Manage ; 270: 110835, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32501237

RESUMO

The degradation of the antibiotic thiamphenicol has been studied by photoelectro-Fenton (PEF) process with UVA light using pyrite particles as catalyst source. Pyrite is a sulfide mineral that naturally acidifies the reaction medium and releases Fe2+, thus promoting the effective generation of OH from Fenton's reaction. The assays were made in an IrO2/air-diffusion cell, which yielded similar results to a boron-doped diamond (BDD)/air-diffusion one at a lower cost. In dark conditions, electro-Fenton (EF) process showed an analogous ability for drug removal, but mineralization was much poorer because of the large persistence of highly stable by-products. Their photolysis explained the higher performance of PEF. Conventional homogeneous PEF directly using dissolved Fe2+ exhibited a lower mineralization power. This suggests the occurrence of heterogeneous Fenton's reaction over the pyrite surface. The effect of current density and drug content on pyrite-catalyzed PEF performance was examined. The drug heteroatoms were gradually converted into SO42-, Cl- and NO3- ions. Nine aromatic derivatives and two dichloroaliphatic amines were identified by GC-MS, and five short-chain carboxylic acids were detected by ion-exclusion HPLC. A reaction route for thiamphenicol mineralization by PEF process with continuous H2O2 and Fe2+ supply on site is proposed.


Assuntos
Tianfenicol , Poluentes Químicos da Água , Catálise , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Ferro , Oxirredução , Sulfetos
4.
Phys Chem Chem Phys ; 21(36): 20225-20231, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31490516

RESUMO

We report an experimental and theoretical study of two stable radical adducts of the triphenylmethyl series, 1 and 2, whose composition and molecular structure are distinguished by the content and position of chlorine atoms in phenyls. The electrochemical study through cyclic voltammetry of these open layer species shows the existence of two reversible processes, related to reduction and oxidation, to stable charged species. The chemical oxidation of both radical adducts gives rise to stable cations, whose fundamental state has a biradical triplet electronic structure or a closed shell singlet character, depending on the electronic conjugation between the donor and acceptor electron moieties. The presence of chlorines adjacent to the nitrogen in 1 breaks the conjugation between both halves, facilitating the formation of a triplet electronic state of the cation, while the absence of chlorines in these positions in 2 facilitates partial conjugation and stabilizes the closed shell singlet electronic state of the cation.

5.
J Environ Manage ; 231: 213-221, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342334

RESUMO

The main objective of this work is to demonstrate the viability of solar photoelectro-Fenton (SPEF) process to degrade pesticides in urban wastewater matrix, selecting the herbicide bentazon as a model molecule. In order to provide a correct assessment of the role of the different oxidants and catalysts involved, bentazon was comparatively treated by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and UVA-assisted EF (i.e., PEF) processes as well, either in sulfate or chloride media. Trials were made in a stirred tank reactor with an air-diffusion cathode and a boron-doped diamond (BDD), RuO2-based or Pt anode. In chlorinated matrices, the herbicide disappeared more rapidly using a RuO2-based anode because of the generated active chlorine. The best mineralization performance was always obtained using BDD due to its higher oxidation power, which allowed the complete destruction of refractory chloroderivatives. A concentration of 0.50 mM Fe2+ was found optimal to catalyze Fenton's reaction, largely enhancing the mineralization process under the action of OH. Among photo-assisted treatments, sunlight was proven superior to a UVA lamp to promote the photolysis of intermediates, owing to its greater UV irradiance and contribution of visible photons, although PEF also allowed achieving a large mineralization. In all cases, bentazon decay obeyed a pseudo-first-order kinetics. SPEF treatment in urban wastewater using BDD at only 16.6 mA cm-2 yielded 63.2% mineralization. A thorough, original reaction pathway for bentazon degradation is proposed, including seven non-chlorinated aromatics, sixteen chloroaromatics and two chloroaliphatics identified by GC-MS, most of them not previously reported in literature. Ion-exclusion HPLC allowed the detection of seven short-chain linear carboxylic acids.


Assuntos
Herbicidas , Poluentes Químicos da Água , Benzotiadiazinas , Técnicas Eletroquímicas , Eletrodos , Eletrólise , Peróxido de Hidrogênio , Oxirredução , Luz Solar
6.
J Environ Manage ; 224: 340-349, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30056353

RESUMO

The destruction of the herbicide chloramben in 0.050 M Na2SO4 solutions at natural pH has been studied by photoelectro-Fenton with UVA light (PEF). The trials were carried out in a cell equipped with an air-diffusion cathode for H2O2 generation and different electrocatalytic anodes, namely active IrO2-based and RuO2-based electrodes and non-active boron-doped diamond (BDD) and PbO2 ones. Similar removal rates were found regardless of the anode nature because the herbicide was mainly oxidized by OH formed from Fenton's reaction, which was enhanced by UVA-induced photo-Fenton reaction. The use of an IrO2-based anode led to almost total mineralization at high current density, as also occurred with the powerful BDD anode, since photoactive intermediates originated from OH-mediated oxidation were degraded under irradiation with UVA light. The good performance of the IrO2-based anode in PEF was confirmed at different current densities and herbicide concentrations. The presence of Cl- in the medium caused a slight deceleration of herbicide removal as well as mineralization inhibition, owing to the production of active chlorine with consequent formation of persistent chloroderivatives. Seven aromatic products along with oxalic and oxamic acids were identified in sulfate medium. Five aromatic derivatives were detected in Cl--containing matrix, corroborating the generation of organochlorine compounds. In secondary effluent, larger mineralization was achieved by PEF with a BDD anode due to its high oxidation ability to destroy the chloroderivatives, although an acceptable performance was also obtained using an IrO2-based anode.


Assuntos
Clorobenzoatos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Boro , Clorobenzoatos/química , Diamante , Eletroquímica , Eletrodos , Herbicidas , Peróxido de Hidrogênio , Oxirredução , Água , Poluentes Químicos da Água/química
7.
Water Sci Technol ; 78(10): 2131-2140, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30629541

RESUMO

This paper reports the degradation of a solution of 0.314 mM diclofenac (DCF), while using 5-15 mM Oxone as oxidizing agent with the catalytic action of 0.05-0.2 mM Co2+. The best performance was obtained for 10 mM Oxone and 0.2 mM Co2+, achieving the total DCF abatement and 77% removal of chemical oxygen demand after 30 min. Oxidizing of sulfate (SO4 •-) and hydroxyl (•OH) radicals was formed by the Co2+/Oxone system. Oxone was firstly oxidized to persulfate ion that was then quickly converted into the above free radicals. For Oxone contents ≥10 mM, the decay of DCF concentration followed a second-order kinetic reaction, but the apparent rate constant changed with the Co2+ concentration used. High-performance liquid chromatography (HPLC) analysis of treated solutions showed the formation of some intermediates, whereas oxalic acid was identified as the prevalent final short-linear carboxylic acid by ion-exclusion HPLC.


Assuntos
Diclofenaco/química , Ácidos Sulfúricos/química , Poluentes Químicos da Água/química , Cobalto/química , Radicais Livres , Cinética , Modelos Químicos
8.
Environ Sci Technol ; 50(14): 7679-86, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27328254

RESUMO

Electrocoagulation (EC) has long been considered a phase separation process, well suited for industrial wastewater treatment since it causes a quick, drastic decay of organic matter content. This research demonstrates that EC also behaves, at least for some molecules like the industrial preservative bronopol, as an effective transformation technology able to yield several breakdown products. This finding has relevant environmental implications, pointing to EC as a greener process than described in literature. A thorough optimization of EC was performed with solutions of bronopol in a simulated water matrix, yielding the complete disappearance of the parent molecule within 20 min at 200 mA (∼20 mA/cm(2)), using Fe as the anode and cathode. A 25% of total organic carbon (TOC) abatement was attained as maximum, with bronopol being converted into bromonitromethane, bromochloromethane, formaldehyde and formic acid. N atoms were accumulated as NO3(-), whereas Br(-) was stable once released. This suggests that mediated oxidation by active chlorine, as well as by hydroxyl radicals resulting from its reaction with iron ions, is the main transformation mechanism. Aiming to enhance the mineralization, a sequential combination of EC with electro-Fenton (EF) as post-treatment process was proposed. EF with boron-doped diamond (BDD) anode ensured the gradual TOC removal under the action of (•)OH and BDD((•)OH), also transforming Br(-) into BrO3(-).


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Boro , Diamante , Eletrocoagulação , Eletrodos , Oxirredução
9.
J Org Chem ; 79(4): 1771-7, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24467615

RESUMO

In this paper we report the spectral properties of the stable radical adducts 1(•)-3(•), which are formed by an electron donor moiety, the carbazole ring, and an electron acceptor moiety, the polychlorotriphenylmethyl radical. The molecular structure of radical adduct 1(•) in the crystalline state shows a torsion angle of approximately 90° between the phenyl and the carbazole rings due to steric interactions. They exhibit a charge transfer band in the visible range of the electronic spectrum. All of them are chemically oxidized with copper(II) perchlorate to the respective cation species, which show a strong charge transfer band into the near-infrared region of the spectrum. Radical adducts 1(•)-3(•) and the corresponding stable oxidized species 1(+)-3(+) are real organic mixed-valence compounds due to the open-shell nature of their electronic structure. Charge transfer bands of the cation species are stronger and are bathochromically shifted with respect to those of the neutral species due to the greater acceptor ability of the positively charged central carbon atom of the triphenylmethyl moiety. The cationic species 1(+)-3(+) are diamagnetic, as shown by the absence of a signal in the EPR spectrum in acetonitrile solution at room temperature, but they show an intense and unique band in frozen solutions (183 K).

10.
Chemosphere ; 355: 141766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527631

RESUMO

Azo dyes are largely used in many industries and discharged in large volumes of their effluents into the aquatic environment giving rise to non-esthetic pollution and health-risk problems. Due to the high stability of azo dyes in ambient conditions, they cannot be abated in conventional wastewater treatment plants. Over the last fifteen years, the decontamination of dyeing effluents by persulfate (PS)-based advanced oxidation processes (AOPs) has received a great attention. In these methods, PS is activated to be decomposed into sulfate radical anion (SO4•-), which is further partially hydrolyzed to hydroxyl radical (•OH). Superoxide ion (O2•-) and singlet oxygen (1O2) can also be produced as oxidants. This review summarizes the results reported for the discoloration and mineralization of synthetic and real waters contaminated with azo dyes covering up to November 2023. PS activation with iron, non-iron transition metals, and carbonaceous materials catalysts, heat, UVC light, photocatalysis, photodegradation with iron, electrochemical and related processes, microwaves, ozonation, ultrasounds, and other processes is detailed and analyzed. The principles and characteristics of each method are explained with special attention to the operating variables, the different oxidizing species generated yielding radical and non-radical mechanisms, the addition of inorganic anions and natural organic matter, the aqueous matrix, and the by-products identified. Finally, the overall loss of toxicity or partial detoxification of treated azo dye solutions during the PS-based AOPs is discussed.


Assuntos
Compostos Azo , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Ferro , Oxirredução , Oxidantes , Água
11.
Sci Total Environ ; 912: 169143, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070549

RESUMO

The decolorization and TOC removal of solutions of Acid Brown 14 (AB14) diazo dye containing 50 mg L-1 of total organic carbon (TOC) have been first studied in a continuous-flow electrocoagulation (EC) reactor of 3 L capacity with Fe electrodes of ∼110 cm2 area each. Total loss of color with poor TOC removal was found in chloride, sulfate, and/or hydrogen carbonate matrices after 18 min of this treatment. The best performance was found using 5 anodes and 4 cathodes of Fe at 13.70 A and low liquid flow rate of 10 L h-1, in aerated 39.6 mM NaCl medium within a pH range of 4.0-10.0. The effluent obtained from EC was further treated by electro-Fenton (EF) using a 2.5 L pre-pilot flow plant, which was equipped with a filter-press cell comprising a Pt anode and an air-diffusion cathode for H2O2 electrogeneration. Operating with 0.10-1.0 mM Fe2+ as catalyst at pH 3.0 and 50 mA cm-2, a similar TOC removal of 68 % was found as maximal in chloride and sulfate media using the sequential EC-EF process. The EC-treated solutions were also treated by photoelectro-Fenton (PEF) employing a photoreactor with a 125 W UVA lamp. The sequential EC-PEF process yielded a much higher TOC reduction, close to 90 % and 97 % in chloride and sulfate media, respectively, due to the rapid photolysis of the final Fe(III)-carboxylate complexes. The formation of recalcitrant chloroderivatives from generated active chlorine limited the mineralization in the chloride matrix. For practical applications of this two-step technology, the high energy consumption of the UVA lamp in PEF could be reduced by using free sunlight.

12.
Chemosphere ; 351: 141153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219991

RESUMO

The widespread use of antibiotics for the treatment of bacteriological diseases causes their accumulation at low concentrations in natural waters. This gives health risks to animals and humans since it can increase the damage of the beneficial bacteria, the control of infectious diseases, and the resistance to bacterial infection. Potent oxidation methods are required to remove these pollutants from water because of their inefficient abatement in municipal wastewater treatment plants. Over the last three years in the period 2021-September 2023, powerful peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have been developed to guaranty the effective removal of antibiotics in synthetic and real waters and wastewater. This review presents a comprehensive analysis of the different procedures proposed to activate PMS-producing strong oxidizing agents like sulfate radical (SO4•-), hydroxyl radical (•OH, radical superoxide ion (O2•-), and non-radical singlet oxygen (1O2) at different proportions depending on the experimental conditions. Iron, non-iron transition metals, biochar, and carbonaceous materials catalytic, UVC, photocatalytic, thermal, electrochemical, and other processes for PMS activation are summarized. The fundamentals and characteristics of these procedures are detailed remarking on their oxidation power to remove antibiotics, the influence of operating variables, the production and detection of radical and non-radical oxidizing agents, the effect of added inorganic anions, natural organic matter, and aqueous matrix, and the identification of by-products formed. Finally, the theoretical and experimental analysis of the change of solution toxicity during the PMS-based AOPs are described.


Assuntos
Antibacterianos , Peróxidos , Humanos , Antibacterianos/farmacologia , Oxirredução , Oxidantes , Água
13.
Chemosphere ; 352: 141396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346519

RESUMO

The wide use of the fluoroquinolone antibiotic ciprofloxacin (CIP), combined with its limited removal in wastewater treatment plants, results in a dangerous accumulation in natural water. Here, the complete degradation of CIP by photoelectrocatalysis (PEC), using an FTO/ZnO/TiO2/Ag2Se photoanode that is responsive to blue light, has been investigated. A slow antibiotic concentration decay was found in 0.050 M Na2SO4 under the oxidizing action of holes and OH photogenerated at the anode surface. The degradation was strongly enhanced in 0.070 M NaCl due to mediated oxidation by electrogenerated active chlorine. The latter process became faster at pH 7.0, with total abatement of CIP at concentrations below 2.5 mg L-1 operating at a bias potential of +0.8 V. The performance was enhanced when increasing the anodic potential and decreasing the initial drug content. The use of solar radiation from a simulator was also beneficial, owing to the greater lamp power. In contrast, the electrochemical oxidation in the dark yielded a poor removal, thus confirming the critical role of oxidants formed under light irradiation. The generation of holes and OH was confirmed from tests with specific scavengers like ammonium oxalate and tert-butanol, respectively. The prolonged usage of the photoanode affected its performance due to poisoning of its active centers by degradation by-products, although a good PEC reproducibility was obtained upon surface cleaning.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Antibacterianos/química , Água , Reprodutibilidade dos Testes , Luz , Poluentes Químicos da Água/análise , Eletrodos , Oxirredução
14.
Environ Pollut ; 345: 123397, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272166

RESUMO

The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , América Latina , Águas Residuárias , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise
15.
Chemosphere ; 363: 142825, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996982

RESUMO

Electrochemical oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) with a BDD anode have been comparatively assessed to remediate solutions of Red CL and/or Red WB azo dyes from real raw water. For the EO process in 50 mM Na2SO4 at pH 3.0, the main oxidant was the heterogeneous •OH generated at the anode, whereas in EF and PEF, the cathodic production of H2O2 and the addition of 0.50 mM Fe2+ catalyst additionally originated homogeneous •OH that enhanced the oxidation of organics. In PEF, the solution was illuminated with a 6 W UVA light. An almost total discoloration was always found operating with a 1:1 mixture of 200 mg L-1 of both dyes in 60 min, whose efficiency increased in the order of EO < EF < PEF. The HPLC analysis of the dye mixture treated by PEF disclosed that its degradation process agreed with its discoloration. A high 74% of COD was reduced due to the oxidative action of hydroxyl radicals and the photolysis of final Fe(III)-carboxylate species with UVA irradiation. The process was accompanied by an energy consumption of 0.76 kWh (g COD)-1, a value similar to the energy consumed by the applied UVA light.


Assuntos
Compostos Azo , Boro , Corantes , Diamante , Eletrodos , Oxirredução , Poluentes Químicos da Água , Corantes/química , Poluentes Químicos da Água/química , Boro/química , Compostos Azo/química , Diamante/química , Peróxido de Hidrogênio/química , Curtume , Técnicas Eletroquímicas , Fotólise , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Ferro/química
16.
Water Res ; 261: 122034, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996729

RESUMO

Urine has an intricate composition with high concentrations of organic compounds like urea, creatinine, and uric acid. Urine poses a formidable challenge for advanced effluent treatment processes following urine diversion strategies. Urine matrix complexity is heightened when dealing with pharmaceutical residues like acetaminophen (ACT) and metabolized pharmaceuticals. This work explores ACT degradation in synthetic, fresh real, and hydrolyzed real urines using electrochemical oxidation with a dimensional stable anode (DSA). Analyzing drug concentration (2.5 - 40 mg L-1) over 180 min at various current densities in fresh synthetic effluent revealed a noteworthy 75% removal at 48 mA cm-2. ACT degradation kinetics and that of the other organic components followed a pseudo-first-order reaction. Uric acid degradation competed with ACT degradation, whereas urea and creatinine possessed higher oxidation resistance. Fresh real urine presented the most challenging scenario for the electrochemical process. Whereas, hydrolyzed real urine achieved higher ACT removal than fresh synthetic urine. Carboxylic acids like acetic, tartaric, maleic, and oxalic were detected as main by-products. Inorganic ionic species nitrate, nitrite, and ammonium ions were released to the medium from N-containing organic compounds. These findings underscore the importance of considering urine composition complexities and provide significant advancements in strategies for efficiently addressing trace pharmaceutical contamination.


Assuntos
Acetaminofen , Acetaminofen/química , Acetaminofen/urina , Humanos , Técnicas Eletroquímicas , Urina/química , Oxirredução , Cinética
17.
Chemosphere ; 327: 138532, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003440

RESUMO

Recalcitrant and toxic organic pollutants from wastewaters are scarcely removed in conventional wastewater treatment plants. To preserve the water quality, organics need to be removed by developing powerful oxidation technologies. Our laboratory proposed in 2007 a potent electrochemical advanced oxidation process (EAOP) for wastewater remediation, so-called solar photoelectro-Fenton (SPEF). This review summarizes the advances of this emerging technology up to 2022, making evident its effectiveness and cost-efficiency for the destruction of usual organic pollutants. The simultaneous action of generated hydroxyl radicals and the photolysis by sunlight explains the high oxidation power of SPEF respect to other EAOPs. The review is initiated by describing the fundamentals of the process to remark the role of the produced oxidants and the benefits of using solar irradiation in its performance. The photoelectrochemical systems used (bench tank reactor and solar pre-pilot flow plant) and the assessment of the operating variables are discussed. The characteristics of the most common homogeneous SPEF for the degradation and mineralization of several synthetic solutions of industrial chemicals, herbicides, pharmaceuticals, and synthetic organic dyes, as well as of some real wastewaters, are further described. The influence of the photoelectrochemical cell, electrodes, solution pH, electrolyte composition, Fe2+ and pollutant concentration, and current density is analyzed. The performance of a homogeneous SPEF-like process with active chlorine and heterogeneous SPEF processes with solid catalysts such as Fe3O4 and sodium vermiculite is also discussed. Finally, the advances of homogeneous SPEF combined with other techniques like solar photocatalysis, solar photoelectrocatalysis, anaerobic digestion, and nanofiltration are reported.


Assuntos
Poluentes Ambientais , Herbicidas , Poluentes Químicos da Água , Águas Residuárias , Luz Solar , Técnicas Eletroquímicas , Herbicidas/química , Oxirredução , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Eletrodos
18.
Chemosphere ; 313: 137411, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460148

RESUMO

Paracetamol (PCT) or acetaminophen is a widely prescribed drug to treat fever and mild to moderate pain. The PCT uptake by animals and humans is not complete, being excreted through their urine to contaminate the aquatic/natural environments. Trace amounts of this drug have been found in sewage sludge, hospital wastewaters, wastewater plant treatments, surface waters, and even drinking water. PCT denatures proteins and oxidize lipids in cells with damage of their genetic code. Its toxicity over macrophytes, protozoan, algae, bacteria, and fishes has been reported. Ozonation methods have been proposed as efficient treatments to solve this pollution. This comprehensive and critical review is focused on the application of ozonation processes to remove PCT polluted water from different sources, like natural waters, synthetic waters, and real wastewaters. The fundamentals, operating variables, and best results by direct ozonation and hybrid catalytic ozonation are described, with attention to produced reactive oxygen species and their oxidative action. Single ozonation, catalytic modification of materials, and hybrid non-catalytic processes are detailed as direct ozonation methods. Ozonation with metal-based catalysts and photolytic and photocatalytic ozonation as hybrid catalytic methods are analyzed. Sequential non-biological and biological treatments with ozone and ozonation for wastewater remediation in treatment plants are described. Reaction sequences proposed for PCT mineralization are finally discussed, showing the initial formation of hydroquinone and 2-hydroxy-4-(N-acetyl)-aminophenol and their consecutive evolution to ultimate carboxylic acids like oxalic and oxamic. The ability of the methods to destroy these acids and their iron- and/or copper-complexes explains their mineralization performance.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Humanos , Animais , Águas Residuárias , Acetaminofen , Poluentes Químicos da Água/análise , Esgotos , Purificação da Água/métodos , Catálise
19.
Chemosphere ; 339: 139666, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532204

RESUMO

Today, water shortage problems around the world have forced the search for new treatment alternatives, in this context, electrochemical oxidation technology is a hopeful process for wastewater treatment, although it is still needed exploration of new efficient and economically viable electrode materials. In this way, mixed metal oxide anodes look like promising alternatives but their preparation is still a significant point to study, searching for finding low-cost materials to improve electrocatalytic efficiencies. In an exploration of this kind of highly efficient materials, this work presents the results obtained using an MMO Ti/IrO2-SnO2-Sb2O5 anode. All the prepared anodes exhibited excellent physical and electrochemical properties. The electrochemical oxidation of 100 mL and 200 mg L-1 Reactive Orange 84 (RO 84) diazo dye was studied using 3 cm2 of such synthesized anodes by applying current densities of 25, 50, and 100 mA cm-2. Faster and more efficient electrochemical oxidation occurred at 100 mA cm-2 with 50 mM of Na2SO4 + 10 mM NaCl as supporting electrolyte at pH 3.0. The degradation and mineralization processes of the above solution were enhanced with the electro-Fenton process with 0.05 mM Fe2+ and upgraded using photoelectron-Fenton with UVA light. This process yielded 91% COD decay with a low energy consumption of 0.1137 kWh (g COD)-1 at 60 min. The evolution of a final carboxylic acid like oxalic was followed by HPLC analysis. The Ti/IrO2-SnO2-Sb2O5 is then an efficient and low-cost anode for the photoelectro-Fenton treatment of RO 84 in a chloride and sulfate media.


Assuntos
Raios Ultravioleta , Poluentes Químicos da Água , Titânio/química , Peróxido de Hidrogênio/química , Oxirredução , Eletrodos , Poluentes Químicos da Água/química , Técnicas Eletroquímicas
20.
Chemosphere ; 344: 140407, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838029

RESUMO

Ciprofloxacin (CIP) is a commonly prescribed fluoroquinolone antibiotic that, even after uptake, remains unmetabolized to a significant extent-over 70%. Unmetabolized CIP is excreted through both urine and feces. This persistent compound manages to evade removal in municipal wastewater facilities, leading to its substantial accumulation in aquatic environments. This accumulation raises concerns about potential risks to the health of various living organisms. Herein, we present a study on the remediation of CIP in synthetic urine by electrochemical oxidation in an undivided cell with a DSA (Ti/IrO2) anode and a stainless-steel cathode. Physisorbed hydroxyl radical formed at the anode surface from water discharge and free chlorine generated from Cl- oxidation were the main oxidizing agents. The effect of pH and current density (j) on CIP degradation was examined, and its total removal was easily achieved at pH ≥ 7.0 and j ≥ 60 mA cm-2 due to the action of free chlorine. The CIP decay always followed a pseudo-first-order kinetics. The components of the synthetic urine were also oxidized. The main nitrogenated species released was NH3. A very small concentration of free chlorine was quantified at the end of the treatment, thus demonstrating the good performance of electrochemical oxidation and its effectiveness to destroy all the organic pollutants. The present study demonstrates the simultaneous oxidation of the organic components of urine during CIP degradation, thus showing a unique perspective for its electrochemical oxidation that enhances the environmental remediation strategies.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/química , Ciprofloxacina/química , Cloro , Oxirredução , Eletrodos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA