Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Genet Med ; 26(5): 101087, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38288683

RESUMO

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Interneurônios , Fatores de Transcrição Sp , Fatores de Transcrição , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Epilepsia/genética , Epilepsia/patologia , Heterozigoto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Interneurônios/metabolismo , Interneurônios/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Sp/genética
2.
Brain ; 146(12): 4880-4890, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769650

RESUMO

Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about these disorders is limited. Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-related or benign. The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment strategies.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Insensibilidade Congênita à Dor , Humanos , Insensibilidade Congênita à Dor/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Mutação/genética
3.
Ann Neurol ; 91(2): 225-237, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954817

RESUMO

OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.


Assuntos
Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/genética , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Distonia/enzimologia , Distonia/genética , Epilepsia/genética , Variação Genética , Humanos , Mitocôndrias/genética , Translocases Mitocondriais de ADP e ATP/genética , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Modelos Moleculares , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Proteômica , Sequenciamento do Exoma
4.
Genet Med ; 23(9): 1769-1778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34040194

RESUMO

PURPOSE: Diseases caused by defects in mitochondrial DNA (mtDNA) maintenance machinery, leading to mtDNA deletions, form a specific group of disorders. However, mtDNA deletions also appear during aging, interfering with those resulting from mitochondrial disorders. METHODS: Here, using next-generation sequencing (NGS) data processed by eKLIPse and data mining, we established criteria distinguishing age-related mtDNA rearrangements from those due to mtDNA maintenance defects. MtDNA deletion profiles from muscle and urine patient samples carrying pathogenic variants in nuclear genes involved in mtDNA maintenance (n = 40) were compared with age-matched controls (n = 90). Seventeen additional patient samples were used to validate the data mining model. RESULTS: Overall, deletion number, heteroplasmy level, deletion locations, and the presence of repeats at deletion breakpoints were significantly different between patients and controls, especially in muscle samples. The deletion number was significantly relevant in adults, while breakpoint repeat lengths surrounding deletions were discriminant in young subjects. CONCLUSION: Altogether, eKLIPse analysis is a powerful tool for measuring the accumulation of mtDNA deletions between patients of different ages, as well as in prioritizing novel variants in genes involved in mtDNA stability.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Adulto , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Deleção de Sequência/genética
5.
Emerg Infect Dis ; 26(3): 491-503, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32091371

RESUMO

Mycobacterium ulcerans is the causative agent of Buruli ulcer, a neglected tropical disease found in rural areas of West and Central Africa. Despite the ongoing efforts to tackle Buruli ulcer epidemics, the environmental reservoir of its pathogen remains elusive, underscoring the need for new approaches to improving disease prevention and management. In our study, we implemented a local-scale spatial clustering model and deciphered the genetic diversity of the bacteria in a small area of Benin where Buruli ulcer is endemic. Using 179 strain samples from West Africa, we conducted a phylogeographic analysis combining whole-genome sequencing with spatial scan statistics. The 8 distinct genotypes we identified were by no means randomly spread over the studied area. Instead, they were divided into 3 different geographic clusters, associated with landscape characteristics. Our results highlight the ability of M. ulcerans to evolve independently and differentially depending on location in a specific ecologic reservoir.


Assuntos
Úlcera de Buruli/epidemiologia , Mycobacterium ulcerans/isolamento & purificação , Benin/epidemiologia , Úlcera de Buruli/tratamento farmacológico , Úlcera de Buruli/microbiologia , DNA Bacteriano/análise , Reservatórios de Doenças , Genótipo , Humanos , Mycobacterium ulcerans/genética , Filogeografia , Microbiologia da Água
6.
Am J Med Genet A ; 182(3): 565-569, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31793730

RESUMO

RING Finger Protein 113 A (RNF113A, MIM 300951) is a highly conserved gene located on chromosome Xq24-q25, encoding a protein containing two conserved zinc finger domains involved in DNA alkylation repair and premessenger RNA splicing. To date, only one pathogenic variant of RNF113A, namely c.901C>T; p.Gln301Ter, has been reported in humans by Tarpey et al. in 2009. Thereafter, Corbett et al. stated that this variant was responsible for an X-linked form of nonphotosensitive trichothiodystrophy associated with profound intellectual disability, microcephaly, partial corpus callosum agenesis, microphallus, and absent or rudimentary testes. This variant was then shown to alter DNA alkylation repair, providing an additional argument supporting its pathogenicity and important clues about the underlying pathophysiology of nonphotosensitive trichothiodystrophy. Using exome sequencing, we identified exactly the same RNF113A variant in two fetuses affected with abnormalities similar to those previously reported by Corbett et al. To our knowledge, this is the second report of a RNF113A pathogenic variant in humans.


Assuntos
Agenesia do Corpo Caloso/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Síndromes de Tricotiodistrofia/genética , Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/patologia , Exoma/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/patologia , Linhagem , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/patologia , Sequenciamento do Exoma
7.
Mol Biol Rep ; 47(5): 3779-3787, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319008

RESUMO

Mitochondrial diseases are a clinically heterogeneous group of multisystemic disorders that arise as a result of various mitochondrial dysfunctions. Autosomal recessive aARS deficiencies represent a rapidly growing group of severe rare inherited mitochondrial diseases, involving multiple organs, and currently without curative option. They might be related to defects of mitochondrial aminoacyl t-RNA synthetases (mtARS) that are ubiquitous enzymes involved in mitochondrial aminoacylation and the translation process. Here, using NGS analysis of 281 nuclear genes encoding mitochondrial proteins, we identified 4 variants in different mtARS in three patients from unrelated Tunisian families, with clinical features of mitochondrial disorders. Two homozygous variants were found in KARS (c.683C>T) and AARS2 (c.1150-4C>G), respectively in two patients, while two heterozygous variants in EARS2 (c.486-7C>G) and DARS2 (c.1456C>T) were concomitantly found in the third patient. Bio-informatics investigations predicted their pathogenicity and deleterious effects on pre-mRNA splicing and on protein stability. Thus, our results suggest that mtARS mutations are common in Tunisian patients with mitochondrial diseases.


Assuntos
Alanina-tRNA Ligase/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Alanina-tRNA Ligase/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Masculino , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação/genética , Linhagem
8.
Hum Mutat ; 40(12): 2430-2443, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31379041

RESUMO

The expanding use of exome sequencing (ES) in diagnosis generates a huge amount of data, including untargeted mitochondrial DNA (mtDNA) sequences. We developed a strategy to deeply study ES data, focusing on the mtDNA genome on a large unspecific cohort to increase diagnostic yield. A targeted bioinformatics pipeline assembled mitochondrial genome from ES data to detect pathogenic mtDNA variants in parallel with the "in-house" nuclear exome pipeline. mtDNA data coming from off-target sequences (indirect sequencing) were extracted from the BAM files in 928 individuals with developmental and/or neurological anomalies. The mtDNA variants were filtered out based on database information, cohort frequencies, haplogroups and protein consequences. Two homoplasmic pathogenic variants (m.9035T>C and m.11778G>A) were identified in 2 out of 928 unrelated individuals (0.2%): the m.9035T>C (MT-ATP6) variant in a female with ataxia and the m.11778G>A (MT-ND4) variant in a male with a complex mosaic disorder and a severe ophthalmological phenotype, uncovering undiagnosed Leber's hereditary optic neuropathy (LHON). Seven secondary findings were also found, predisposing to deafness or LHON, in 7 out of 928 individuals (0.75%). This study demonstrates the usefulness of including a targeted strategy in ES pipeline to detect mtDNA variants, improving results in diagnosis and research, without resampling patients and performing targeted mtDNA strategies.


Assuntos
Biologia Computacional/métodos , DNA Mitocondrial/genética , Deficiências do Desenvolvimento/genética , Sequenciamento do Exoma/métodos , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Diagnóstico Precoce , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/diagnóstico , Adulto Jovem
9.
Genet Med ; 21(6): 1407-1416, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30393377

RESUMO

PURPOSE: Accurate detection of mitochondrial DNA (mtDNA) alterations is essential for the diagnosis of mitochondrial diseases. The development of high-throughput sequencing technologies has enhanced the detection sensitivity of mtDNA pathogenic variants, but the detection of mtDNA rearrangements, especially multiple deletions, is still poorly processed. Here, we present eKLIPse, a sensitive and specific tool allowing the detection and quantification of large mtDNA rearrangements from single and paired-end sequencing data. METHODS: The methodology was first validated using a set of simulated data to assess the detection sensitivity and specificity, and second with a series of sequencing data from mitochondrial disease patients carrying either single or multiple deletions, related to pathogenic variants in nuclear genes involved in mtDNA maintenance. RESULTS: eKLIPse provides the precise breakpoint positions and the cumulated percentage of mtDNA rearrangements at a given gene location with a detection sensitivity lower than 0.5% mutant. eKLIPse software is available either as a script to be integrated in a bioinformatics pipeline, or as user-friendly graphical interface to visualize the results through a Circos representation ( https://github.com/dooguypapua/eKLIPse ). CONCLUSION: Thus, eKLIPse represents a useful resource to study the causes and consequences of mtDNA rearrangements, for further genotype/phenotype correlations in mitochondrial disorders.


Assuntos
DNA Mitocondrial/genética , Análise de Sequência de DNA/métodos , Deleção de Sequência/genética , Sequência de Bases/genética , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Software
10.
Clin Genet ; 96(4): 354-358, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290144

RESUMO

TTI2 (MIM 614126) has been described as responsible for autosomal recessive intellectual disability (ID; MRT39, MIM:615541) in only two inbred families. Here, we give an account of two individuals from two unrelated outbred families harbouring compound heterozygous TTI2 pathogenic variants. Together with severe ID, progressive microcephaly, scoliosis and sleeping disorder are the most striking features in the two individuals concerned. TTI2, together with TTI1 and TELO2, encode proteins that constitute the triple T heterotrimeric complex. This TTT complex interacts with the HSP90 and R2TP to form a super-complex that has a chaperone function stabilising and maturing a number of kinases, such as ataxia-telangiectasia mutated and mechanistic target of rapamycin, which are key regulators of cell proliferation and genome maintenance. Pathogenic variants in TTI2 logically result in a phenotype close to that caused by TELO2 variants.


Assuntos
Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Adolescente , Criança , Fácies , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Fenótipo , Radiografia
11.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1596-1608, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29454073

RESUMO

Ketogenic diet (KD) which combined carbohydrate restriction and the addition of ketone bodies has emerged as an alternative metabolic intervention used as an anticonvulsant therapy or to treat different types of neurological or mitochondrial disorders including MELAS syndrome. MELAS syndrome is a severe mitochondrial disease mainly due to the m.3243A > G mitochondrial DNA mutation. The broad success of KD is due to multiple beneficial mechanisms with distinct effects of very low carbohydrates and ketones. To evaluate the metabolic part of carbohydrate restriction, transmitochondrial neuronal-like cybrid cells carrying the m.3243A > G mutation, shown to be associated with a severe complex I deficiency was exposed during 3 weeks to glucose restriction. Mitochondrial enzyme defects were combined with an accumulation of complex I (CI) matrix intermediates in the untreated mutant cells, leading to a drastic reduction in CI driven respiration. The severe reduction of CI was also paralleled in post-mortem brain tissue of a MELAS patient carrying high mutant load. Importantly, lowering significantly glucose concentration in cell culture improved CI assembly with a significant reduction of matrix assembly intermediates and respiration capacities were restored in a sequential manner. In addition, OXPHOS protein expression and mitochondrial DNA copy number were significantly increased in mutant cells exposed to glucose restriction. The accumulation of CI matrix intermediates appeared as a hallmark of MELAS pathophysiology highlighting a critical pathophysiological mechanism involving CI disassembly, which can be alleviated by lowering glucose fuelling and the induction of mitochondrial biogenesis, emphasizing the usefulness of metabolic interventions in MELAS syndrome.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Síndrome MELAS/enzimologia , Mitocôndrias/enzimologia , Neurônios/enzimologia , Mutação Puntual , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Síndrome MELAS/genética , Síndrome MELAS/patologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios/patologia , Fosforilação Oxidativa
12.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 284-291, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815040

RESUMO

Ketogenic Diet used to treat refractory epilepsy for almost a century may represent a treatment option for mitochondrial disorders for which effective treatments are still lacking. Mitochondrial complex I deficiencies are involved in a broad spectrum of inherited diseases including Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes syndrome leading to recurrent cerebral insults resembling strokes and associated with a severe complex I deficiency caused by mitochondrial DNA (mtDNA) mutations. The analysis of MELAS neuronal cybrid cells carrying the almost homoplasmic m.3243A>G mutation revealed a metabolic switch towards glycolysis with the production of lactic acid, severe defects in respiratory chain activity and complex I disassembly with an accumulation of assembly intermediates. Metabolites, NADH/NAD+ ratio, mitochondrial enzyme activities, oxygen consumption and BN-PAGE analysis were evaluated in mutant compared to control cells. A severe complex I enzymatic deficiency was identified associated with a major complex I disassembly with an accumulation of assembly intermediates of 400kDa. We showed that Ketone Bodies (KB) exposure for 4weeks associated with glucose deprivation significantly restored complex I stability and activity, increased ATP synthesis and reduced the NADH/NAD+ ratio, a key component of mitochondrial metabolism. In addition, without changing the mutant load, mtDNA copy number was significantly increased with KB, indicating that the absolute amount of wild type mtDNA copy number was higher in treated mutant cells. Therefore KB may constitute an alternative and promising therapy for MELAS syndrome, and could be beneficial for other mitochondrial diseases caused by complex I deficiency.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Corpos Cetônicos/farmacologia , Síndrome MELAS/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Dieta Cetogênica , Complexo I de Transporte de Elétrons/deficiência , Humanos , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Síndrome MELAS/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/complicações , Neurônios/metabolismo , Neurônios/patologia
13.
Ther Drug Monit ; 39(4): 316-321, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28570370

RESUMO

Monoclonal antibodies (mAbs) may be used as biopharmaceuticals to treat various diseases, ranging from oncology to inflammatory and cardiovascular affections. Trustworthy analytical methods are necessary to study their pharmacokinetics, both during their development and in post-marketing studies. Because biopharmaceuticals are macromolecules, ligand-binding assays (both immunoassays and bioassays) are methods of choice to measure their concentrations. Immunoassays are based on the capture of biopharmaceuticals by their target, which may be a circulating or membrane antigen or by an antibody recognizing their structure. Bioassays measure the activity of the biopharmaceutical in a specific in vitro test. A number of techniques have been reported, but their limits of detection and quantification vary widely. Anti-drug antibodies (ADA) against biopharmaceuticals are often formed and sometimes interfere with clinical efficacy. Accurate and reliable detection of ADA is therefore necessary. Binding of ADA is dependent on affinity and avidity, which makes quantification challenging. In this review, we discuss the benefits and limitations of each method to determine mAb levels and carefully compare ADA assays.


Assuntos
Anticorpos Monoclonais/sangue , Anticorpos/sangue , Biofarmácia/métodos , Animais , Biofarmácia/normas , Humanos , Imunoensaio/métodos , Imunoensaio/normas
14.
Brain ; 139(11): 2864-2876, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633772

RESUMO

Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q 2cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as the greater expression of C/EBP homologous protein and the increased XBP1 splicing, in fibroblasts from affected patients, all these changes being reversed by the endoplasmic reticulum stress inhibitor, TUDCA (tauroursodeoxycholic acid). Thus, our metabolomic analysis reveals a pharmacologically-reversible endoplasmic reticulum stress in complex I-related Leber's hereditary optic neuropathy fibroblasts, a finding that may open up new therapeutic perspectives for the treatment of Leber's hereditary optic neuropathy with endoplasmic reticulum-targeting drugs.


Assuntos
DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Mutação/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Adulto , Idoso , Células Cultivadas , Estudos de Coortes , Complexo I de Transporte de Elétrons/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Inseticidas/farmacologia , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , Piridinas/farmacologia , Rotenona/farmacologia , Adulto Jovem
15.
Neurobiol Dis ; 90: 20-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26311407

RESUMO

Mutations in the Optic Atrophy 1 gene (OPA1) were first identified in 2000 as the main cause of Dominant Optic Atrophy, a disease specifically affecting the retinal ganglion cells and the optic nerve. Since then, an increasing number of symptoms involving the central, peripheral and autonomous nervous systems, with considerable variations of age of onset and severity, have been reported in OPA1 patients. This variety of phenotypes is attributed to differences in the effects of OPA1 mutations, to the mode of inheritance, which may be mono- or bi-allelic, and eventually to somatic mitochondrial DNA mutations. The diversity of the pathophysiological mechanisms involved in OPA1-related disorders is linked to the crucial role played by OPA1 in the maintenance of mitochondrial structure, genome and function. The neurological expression of these disorders highlights the importance of mitochondrial dynamics in neuronal processes such as dendritogenesis, axonal transport, and neuronal survival. Thus, OPA1-related disorders may serve as a paradigm in the wider context of neurodegenerative syndromes, particularly for the development of novel therapeutic strategies against these diseases.


Assuntos
GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/fisiopatologia , Animais , Humanos
16.
Eur J Hum Genet ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806662

RESUMO

Tuberous sclerosis complex (TSC) is a rare multisystemic disorder caused by a pathogenic variant in the TSC1 or TSC2 gene. A great phenotypic variability characterises TSC. The condition predisposes to the formation of hamartomas in various tissues, neurologic and neurodevelopmental disorders such as epilepsy, psychiatric disorders, as well as intellectual disability in 50%. TSC may be responsible for cardiac rhabdomyomas (CRs), cortical tubers, or subependymal nodules during foetal life. Detecting multiple CRs is associated with a very high risk of TSC, but the CR could be single and isolated. Few data exist to estimate the risk of TSC in these cases. We report the largest series of prenatal genetic tests for TSC with a retrospective study of 240 foetuses presenting with suggestive antenatal signs. We also provide a review of the literature to specify the probability of clinical or genetic diagnosis of TSC in case of detection of single or multiple CRs. Indeed, an early diagnosis is crucial for the counselling of the couple and their families. In this series, a definite diagnosis was assessed in 50% (41/82) of foetuses who initially presented with a single CR and 80.3% (127/158) in cases of multiple CRs. The prevalence of parental germinal mosaicism was 2.6% (3/115).

17.
Ann Clin Transl Neurol ; 11(6): 1478-1491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703036

RESUMO

OBJECTIVE: The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. METHODS: Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. RESULTS: The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. INTERPRETATION: We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico , França , Criança , Adulto , Masculino , Feminino , Adolescente , Pessoa de Meia-Idade , Pré-Escolar , Estudos de Coortes , Adulto Jovem , Lactente , Sequenciamento do Exoma , Idoso , Sequenciamento Completo do Genoma , DNA Mitocondrial/genética , Diagnóstico Diferencial
18.
Brain Commun ; 6(3): fcae160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756539

RESUMO

Autosomal recessive pathogenetic variants in the DGUOK gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients. A systematic literature review from January 2001 to June 2023 was conducted. Physicians of research centres or clinicians all around the world caring for previously reported patients were contacted to provide followup information or additional clinical, biochemical, histological/histochemical, and molecular genetics data for unreported cases with a confirmed molecular diagnosis of deoxyguanosine kinase deficiency. A cohort of 202 genetically confirmed patients, 36 unreported, and 166 from a systematic literature review, were analyzed. Patients had a neonatal onset (≤ 1 month) in 55.7% of cases, infantile (>1 month and ≤ 1 year) in 32.3%, pediatric (>1 year and ≤18 years) in 2.5% and adult (>18 years) in 9.5%. Kaplan-Meier analysis showed statistically different survival rates (P < 0.0001) among the four age groups with the highest mortality for neonatal onset. Based on the clinical phenotype, we defined four different clinical subtypes: hepatocerebral (58.8%), isolated hepatopathy (21.9%), hepatomyoencephalopathy (9.6%), and isolated myopathy (9.6%). Muscle involvement was predominant in adult-onset cases whereas liver dysfunction causes morbidity and mortality in early-onset patients with a median survival of less than 1 year. No genotype-phenotype correlation was identified. Liver transplant significantly modified the survival rate in 26 treated patients when compared with untreated. Only six patients had additional mild neurological signs after liver transplant. In conclusion, deoxyguanosine kinase deficiency is a disease spectrum with a prevalent liver and brain tissue specificity in neonatal and infantile-onset patients and muscle tissue specificity in adult-onset cases. Our study provides clinical, molecular genetics and biochemical data for early diagnosis, clinical trial planning and immediate intervention with liver transplant and/or nucleoside supplementation.

19.
Psychoneuroendocrinology ; 155: 106322, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423094

RESUMO

Stress triggers anticipatory physiological responses that promote survival, a phenomenon termed allostasis. However, the chronic activation of energy-dependent allostatic responses results in allostatic load, a dysregulated state that predicts functional decline, accelerates aging, and increases mortality in humans. The energetic cost and cellular basis for the damaging effects of allostatic load have not been defined. Here, by longitudinally profiling three unrelated primary human fibroblast lines across their lifespan, we find that chronic glucocorticoid exposure increases cellular energy expenditure by ∼60%, along with a metabolic shift from glycolysis to mitochondrial oxidative phosphorylation (OxPhos). This state of stress-induced hypermetabolism is linked to mtDNA instability, non-linearly affects age-related cytokines secretion, and accelerates cellular aging based on DNA methylation clocks, telomere shortening rate, and reduced lifespan. Pharmacologically normalizing OxPhos activity while further increasing energy expenditure exacerbates the accelerated aging phenotype, pointing to total energy expenditure as a potential driver of aging dynamics. Together, our findings define bioenergetic and multi-omic recalibrations of stress adaptation, underscoring increased energy expenditure and accelerated cellular aging as interrelated features of cellular allostatic load.


Assuntos
Alostase , Humanos , Alostase/fisiologia , Envelhecimento/fisiologia , Adaptação Fisiológica/fisiologia , Senescência Celular , Metabolismo Energético
20.
Commun Biol ; 6(1): 22, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635485

RESUMO

Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.


Assuntos
Doenças Mitocondriais , Fosforilação Oxidativa , Humanos , Longevidade , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA