Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(12): eadj4387, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517971

RESUMO

Much is known about molecular mechanisms by which animals detect pathogenic microbes, but how animals sense beneficial microbes remains poorly understood. The roundworm Caenorhabditis elegans is a microbivore that must distinguish nutritive microbes from pathogens. We characterized a neural circuit used by C. elegans to rapidly discriminate between nutritive bacteria and pathogens. Distinct sensory neuron populations responded to chemical cues from nutritive Escherichia coli and pathogenic Enterococcus faecalis, and these neural signals are decoded by downstream AIB interneurons. The polyamine metabolites cadaverine, putrescine, and spermidine produced by E. coli activate this neural circuit and elicit positive chemotaxis. Our study shows how polyamine odorants can be sensed by animals as proxies for microbe identity and suggests that, hence, polyamines might have widespread roles brokering host-microbe interactions.


Assuntos
Caenorhabditis elegans , Poliaminas , Animais , Poliaminas/metabolismo , Caenorhabditis elegans/metabolismo , Escherichia coli/metabolismo , Espermidina , Putrescina
2.
Cell Rep ; 42(5): 112452, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119137

RESUMO

The nematode C. elegans uses mechanosensitive neurons to detect bacteria, which are food for worms. These neurons release dopamine to suppress foraging and promote dwelling. Through a screen of genes highly expressed in dopaminergic food-sensing neurons, we identify a K2P-family potassium channel-TWK-2-that damps their activity. Strikingly, loss of TWK-2 restores mechanosensation to neurons lacking the NOMPC-like channel transient receptor potential 4 (TRP-4), which was thought to be the primary mechanoreceptor for tactile food sensing. The alternate mechanoreceptor mechanism uncovered by TWK-2 mutation requires three Deg/ENaC channel subunits: ASIC-1, DEL-3, and UNC-8. Analysis of cell-physiological responses to mechanostimuli indicates that TRP and Deg/ENaC channels work together to set the range of analog encoding of stimulus intensity and to improve signal-to-noise characteristics and temporal fidelity of food-sensing neurons. We conclude that a specialized mechanosensory modality-tactile food sensing-emerges from coordination of distinct force-sensing mechanisms housed in one type of sensory neuron.


Assuntos
Proteínas de Caenorhabditis elegans , Percepção do Tato , Animais , Caenorhabditis elegans/metabolismo , Canais Iônicos/genética , Tato/fisiologia , Células Receptoras Sensoriais/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canais Iônicos Sensíveis a Ácido , Canais Epiteliais de Sódio
3.
Neuron ; 104(6): 1027-1028, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31951533

RESUMO

Many behaviors promote reproduction or food finding. These critical functions of behavior can conflict; successful reproductive strategies can grow populations to the point where food is depleted. In this issue of Neuron, Wu et al. (2019) show how the nematode C. elegans detects crowding to change feeding behavior by coupling pheromone sensing to signaling via insulin-like peptides.


Assuntos
Proteínas de Caenorhabditis elegans , Insulina , Animais , Caenorhabditis elegans , Peptídeos , Feromônios , Mudança Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA