RESUMO
Virulent strains of Streptococcus pyogenes (gram-positive group A Streptococcus pyogenes [GAS]) recruit host single-chain human plasminogen (hPg) to the cell surface-where in the case of Pattern D strains of GAS, hPg binds directly to the cells through a surface receptor, plasminogen-binding group A streptococcal M-protein (PAM). The coinherited Pattern D GAS-secreted streptokinase (SK2b) then accelerates cleavage of hPg at the R561-V562 peptide bond, resulting in the disulfide-linked two-chain protease, human plasmin (hPm). hPm localizes on the bacterial surface, assisting bacterial dissemination via proteolysis of host defense proteins. Studies using isolated domains from PAM and hPg revealed that the A-domain of PAM binds to the hPg kringle-2 module (K2hPg), but how this relates to the function of the full-length proteins is unclear. Herein, we use intact proteins to show that the lysine-binding site of K2hPg is a major determinant of the activation-resistant T-conformation of hPg. The binding of PAM to the lysine-binding site of K2hPg relaxes the conformation of hPg, leading to a greatly enhanced activation rate of hPg by SK2b. Domain swapping between hPg and mouse Pg emphasizes the importance of the Pg latent heavy chain (residues 1-561) in PAM binding and shows that while SK2b binds to both hPg and mouse Pg, the activation properties of streptokinase are strictly attributed to the serine protease domain (residues 562-791) of hPg. Overall, these data show that native hPg is locked in an activation-resistant conformation that is relaxed upon its direct binding to PAM, allowing hPm to form and provide GAS cells with a proteolytic surface.
Assuntos
Proteínas de Bactérias/metabolismo , Plasminogênio/química , Plasminogênio/metabolismo , Estreptoquinase/química , Estreptoquinase/metabolismo , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Humanos , Camundongos , Ligação Proteica , Infecções Estreptocócicas/metabolismo , VirulênciaRESUMO
Human plasminogen (PLG), the zymogen of the fibrinolytic protease, plasmin, is a polymorphic protein with two widely distributed codominant alleles, PLG/Asp453 and PLG/Asn453. About 15 other missense or non-synonymous single nucleotide polymorphisms (nsSNPs) of PLG show major, yet different, relative abundances in world populations. Although the existence of these relatively abundant allelic variants is generally acknowledged, they are often overlooked or assumed to be non-pathogenic. In fact, at least half of those major variants are classified as having conflicting pathogenicity, and it is unclear if they contribute to different molecular phenotypes. From those, PLG/K19E and PLG/A601T are examples of two relatively abundant PLG variants that have been associated with PLG deficiencies (PD), but their pathogenic mechanisms are unclear. On the other hand, approximately 50 rare and ultra-rare PLG missense variants have been reported to cause PD as homozygous or compound heterozygous variants, often leading to a debilitating disease known as ligneous conjunctivitis. The true abundance of PD-associated nsSNPs is unknown since they can remain undetected in heterozygous carriers. However, PD variants may also contribute to other diseases. Recently, the ultra-rare autosomal dominant PLG/K311E has been found to be causative of hereditary angioedema (HAE) with normal C1 inhibitor. Two other rare pathogenic PLG missense variants, PLG/R153G and PLG/V709E, appear to affect platelet function and lead to HAE, respectively. Herein, PLG missense variants that are abundant and/or clinically relevant due to association with disease are examined along with their world distribution. Proposed molecular mechanisms are discussed when known or can be reasonably assumed.
RESUMO
A technological revolution in both light and electron microscopy imaging now allows unprecedented views of clotting, especially in animal models of hemostasis and thrombosis. However, our understanding of three-dimensional high-resolution clot structure remains incomplete since most of our recent knowledge has come from studies of relatively small clots or thrombi, due to the optical impenetrability of clots beyond a few cell layers in depth. Here, we developed an optimized optical clearing method termed cCLOT that renders large whole blood clots transparent and allows confocal imaging as deep as one millimeter inside the clot. We have tested this method by investigating the 3D structure of clots made from reconstituted pre-labeled blood components yielding new information about the effects of clot contraction on erythrocytes. Although it has been shown recently that erythrocytes are compressed to form polyhedrocytes during clot contraction, observations of this phenomenon have been impeded by the inability to easily image inside clots. As an efficient and non-destructive method, cCLOT represents a powerful research tool in studying blood clot structure and mechanisms controlling clot morphology. Additionally, cCLOT optical clearing has the potential to facilitate imaging of ex vivo clots and thrombi derived from healthy or pathological conditions.