Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Biol Chem ; 298(1): 101441, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813793

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Dominant mutations in human IMPDH1 cause photoreceptor degeneration for reasons that are unknown. Here, we sought to provide some foundational information on Impdh1a in the zebrafish retina. We found that in zebrafish, gene subfunctionalization due to ancestral duplication resulted in a predominant retinal variant expressed exclusively in rod and cone photoreceptors. This variant is structurally and functionally similar to the human IMPDH1 retinal variant and shares a reduced sensitivity to GTP-mediated inhibition. We also demonstrated that Impdh1a forms prominent protein filaments in vitro and in vivo in both rod and cone photoreceptor cell bodies, synapses, and to a lesser degree, in outer segments. These filaments changed length and cellular distribution throughout the day consistent with diurnal changes in both mRNA and protein levels. The loss of Impdh1a resulted in a substantial reduction of guanine levels, although cellular morphology and cGMP levels remained normal. Our findings demonstrate a significant role for IMPDH1 in photoreceptor guanine production and provide fundamental new information on the details of this protein in the zebrafish retina.


Assuntos
Guanina , IMP Desidrogenase , Células Fotorreceptoras Retinianas Cones , Animais , Guanina/metabolismo , IMP Desidrogenase/metabolismo , Isoenzimas/metabolismo , Retina/citologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Peixe-Zebra
2.
Proc Natl Acad Sci U S A ; 117(46): 28816-28827, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33144507

RESUMO

Cone photoreceptors in the retina are exposed to intense daylight and have higher energy demands in darkness. Cones produce energy using a large cluster of mitochondria. Mitochondria are susceptible to oxidative damage, and healthy mitochondrial populations are maintained by regular turnover. Daily cycles of light exposure and energy consumption suggest that mitochondrial turnover is important for cone health. We investigated the three-dimensional (3D) ultrastructure and metabolic function of zebrafish cone mitochondria throughout the day. At night retinas undergo a mitochondrial biogenesis event, corresponding to an increase in the number of smaller, simpler mitochondria and increased metabolic activity in cones. In the daytime, endoplasmic reticula (ER) and autophagosomes associate more with mitochondria, and mitochondrial size distribution across the cluster changes. We also report dense material shared between cone mitochondria that is extruded from the cell at night, sometimes forming extracellular structures. Our findings reveal an elaborate set of daily changes to cone mitochondrial structure and function.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Ritmo Circadiano/fisiologia , Adaptação à Escuridão/fisiologia , Retículo Endoplasmático/metabolismo , Retina/metabolismo , Sinapses/metabolismo , Peixe-Zebra
3.
J Biol Chem ; 295(19): 6482-6497, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32238432

RESUMO

Cone photoreceptors in the retina enable vision over a wide range of light intensities. However, the processes enabling cone vision in bright light (i.e. photopic vision) are not adequately understood. Chromophore regeneration of cone photopigments may require the retinal pigment epithelium (RPE) and/or retinal Müller glia. In the RPE, isomerization of all-trans-retinyl esters to 11-cis-retinol is mediated by the retinoid isomerohydrolase Rpe65. A putative alternative retinoid isomerase, dihydroceramide desaturase-1 (DES1), is expressed in RPE and Müller cells. The retinol-isomerase activities of Rpe65 and Des1 are inhibited by emixustat and fenretinide, respectively. Here, we tested the effects of these visual cycle inhibitors on immediate, early, and late phases of cone photopic vision. In zebrafish larvae raised under cyclic light conditions, fenretinide impaired late cone photopic vision, while the emixustat-treated zebrafish unexpectedly had normal vision. In contrast, emixustat-treated larvae raised under extensive dark-adaptation displayed significantly attenuated immediate photopic vision concomitant with significantly reduced 11-cis-retinaldehyde (11cRAL). Following 30 min of light, early photopic vision was recovered, despite 11cRAL levels remaining significantly reduced. Defects in immediate cone photopic vision were rescued in emixustat- or fenretinide-treated larvae following exogenous 9-cis-retinaldehyde supplementation. Genetic knockout of Des1 (degs1) or retinaldehyde-binding protein 1b (rlbp1b) did not eliminate photopic vision in zebrafish. Our findings define molecular and temporal requirements of the nonphotopic or photopic visual cycles for mediating vision in bright light.


Assuntos
Visão de Cores , Células Ependimogliais/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Peixe-Zebra/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Ependimogliais/citologia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Deleção de Genes , Células Fotorreceptoras Retinianas Cones/citologia , Vitamina A/genética , Vitamina A/metabolismo , Peixe-Zebra/genética , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
4.
J Neurosci ; 37(8): 2061-2072, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28115482

RESUMO

Ca2+ ions have distinct roles in the outer segment, cell body, and synaptic terminal of photoreceptors. We tested the hypothesis that distinct Ca2+ domains are maintained by Ca2+ uptake into mitochondria. Serial block face scanning electron microscopy of zebrafish cones revealed that nearly 100 mitochondria cluster at the apical side of the inner segment, directly below the outer segment. The endoplasmic reticulum surrounds the basal and lateral surfaces of this cluster, but does not reach the apical surface or penetrate into the cluster. Using genetically encoded Ca2+ sensors, we found that mitochondria take up Ca2+ when it accumulates either in the cone cell body or outer segment. Blocking mitochondrial Ca2+ uniporter activity compromises the ability of mitochondria to maintain distinct Ca2+ domains. Together, our findings indicate that mitochondria can modulate subcellular functional specialization in photoreceptors.SIGNIFICANCE STATEMENT Ca2+ homeostasis is essential for the survival and function of retinal photoreceptors. Separate pools of Ca2+ regulate phototransduction in the outer segment, metabolism in the cell body, and neurotransmitter release at the synaptic terminal. We investigated the role of mitochondria in compartmentalization of Ca2+ We found that mitochondria form a dense cluster that acts as a diffusion barrier between the outer segment and cell body. The cluster is surprisingly only partially surrounded by the endoplasmic reticulum, a key mediator of mitochondrial Ca2+ uptake. Blocking the uptake of Ca2+ by mitochondria causes redistribution of Ca2+ throughout the cell. Our results show that mitochondrial Ca2+ uptake in photoreceptors is complex and plays an essential role in normal function.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Retina/citologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Animais , Animais Geneticamente Modificados , Antiarrítmicos/farmacologia , Compostos de Boro/farmacocinética , Calmodulina/genética , Calmodulina/metabolismo , Citosol/metabolismo , Corantes Fluorescentes/farmacocinética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Cloreto de Potássio/farmacologia , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Sinapses/metabolismo , Tioureia/análogos & derivados , Tioureia/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Bioessays ; 38 Suppl 1: S119-35, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27417116

RESUMO

Abnormalities in the ability of cells to properly degrade proteins have been identified in many neurodegenerative diseases. Recent work has implicated synaptojanin 1 (SynJ1) in Alzheimer's disease and Parkinson's disease, although the role of this polyphosphoinositide phosphatase in protein degradation has not been thoroughly described. Here, we dissected in vivo the role of SynJ1 in endolysosomal trafficking in zebrafish cone photoreceptors using a SynJ1-deficient zebrafish mutant, nrc(a14) . We found that loss of SynJ1 leads to specific accumulation of late endosomes and autophagosomes early in photoreceptor development. An analysis of autophagic flux revealed that autophagosomes accumulate because of a defect in maturation. In addition we found an increase in vesicles that are highly enriched for PI(3)P, but negative for an early endosome marker in nrc(a14) cones. A mutational analysis of SynJ1 enzymatic domains found that activity of the 5'phosphatase, but not the Sac1 domain, is required to rescue both aberrant late endosomes and autophagosomes. Finally, modulating activity of the PI(4,5)P2 regulator, Arf6, rescued the disrupted trafficking pathways in nrc(a14) cones. Our study describes a specific role for SynJ1 in autophagosomal and endosomal trafficking and provides evidence that PI(4,5)P2 participates in autophagy in a neuronal cell type.


Assuntos
Fatores de Ribosilação do ADP , Autofagia , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra , Peixe-Zebra/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Transporte Proteico , Células Fotorreceptoras Retinianas Cones/fisiologia , Peixe-Zebra/fisiologia
6.
Adv Exp Med Biol ; 1016: 91-100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29130155

RESUMO

Photoreceptors are specialized sensory neurons with unique biological features. Phototransduction is well understood due in part to the exclusive expression and function of the molecular components of this cascade. Many other processes are less well understood, but also extremely important for understanding photoreceptor function and for treating disease. One example is the role of Ca2+ in the cell body and overall compartmentalization and regulation of Ca2+ within the cell. The recent development of CRISPR/Cas9 genome editing techniques has made it possible to rapidly and cheaply alter specific genes. This will help to define the biological function of elusive processes that have been more challenging to study. CRISPR/Cas9 has been optimized in many systems including zebrafish, which already has some distinct advantages for studying photoreceptor biology and function. These new genome editing technologies and the continued use of the zebrafish model system will help advance our understanding of important understudied aspects of photoreceptor biology.


Assuntos
Sistemas CRISPR-Cas/genética , Sinalização do Cálcio/genética , Edição de Genes , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Genoma , Homeostase/genética , Humanos , Células Fotorreceptoras Retinianas Cones/patologia , Peixe-Zebra/genética
7.
Dev Biol ; 386(2): 428-39, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24291744

RESUMO

Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple defects including melanocyte cell death, transient paralysis, and an ion imbalance that leads to the development of kidney stones. Here we report a requirement for Trpm7 in differentiation or function of dopaminergic neurons in vivo. First, trpm7 mutant larvae are hypomotile and fail to make a dopamine-dependent developmental transition in swim-bout length. Both of these deficits are partially rescued by the application of levodopa or dopamine. Second, histological analysis reveals that in trpm7 mutants a significant fraction of dopaminergic neurons lack expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Third, trpm7 mutants are unusually sensitive to the neurotoxin 1-methyl-4-phenylpyridinium, an oxidative stressor, and their motility is partially rescued by application of the iron chelator deferoxamine, an anti-oxidant. Finally, in SH-SY5Y cells, which model aspects of human dopaminergic neurons, forced expression of a channel-dead variant of TRPM7 causes cell death. In summary, a forward genetic screen in zebrafish has revealed that both melanocytes and dopaminergic neurons depend on the ion channel Trpm7. The mechanistic underpinning of this dependence requires further investigation.


Assuntos
Diferenciação Celular/fisiologia , Neurônios Dopaminérgicos/citologia , Atividade Motora/genética , Proteínas Serina-Treonina Quinases/genética , Canais de Cátion TRPM/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , 1-Metil-4-fenilpiridínio/toxicidade , Análise de Variância , Animais , Linhagem Celular , Primers do DNA/genética , Desferroxamina/farmacologia , Eletrorretinografia , Larva/crescimento & desenvolvimento , Melanócitos/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Mutação/genética , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tirosina 3-Mono-Oxigenase/metabolismo , Peixe-Zebra/genética
8.
Exp Eye Res ; 130: 51-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25479044

RESUMO

We previously identified Celsr3, an atypical cadherin, as essential for normal inhibitory circuit formation in the inner retina. Its absence during retinal development leads to increases in GABA receptor numbers on ON-bipolar cell terminals and consequent changes in retinal physiology, but does not cause obvious cell spacing or synaptic lamination defects. This study focuses on defining the subset of amacrine cells that express celsr3 during development of the wild type zebrafish retina. We have developed a BAC transgene expressing EGFP under the control of celsr3 promoter, Tg(celsr3:EGFP). Similar to the retinal expression of the endogenous gene, the transgene is expressed in amacrine, ganglion and bipolar, but not horizontal or photoreceptor cells. We transiently expressed the BAC in zebrafish larvae and categorized 104 celsr3 expressing amacrine cells based on their shape, arborization and lamination. Ten different amacrine cell types express Tg(celsr3:EGFP). These include narrow, medium and wide-field types of varicose cells. There are many multistratified cells, including one not previously identified and a few specific types of monostratified amacrine cells. Non-varicose amacrine cells do not express the transgene. We propose that celsr3 expression in varicose amacrine cells is key to this molecule's function in circuitry formation during retinal development. The BAC transgene we have developed provides a useful tool to study Celsr3 function.


Assuntos
Células Amácrinas/citologia , Células Amácrinas/metabolismo , Caderinas/genética , Regulação da Expressão Gênica/fisiologia , Proteínas de Peixe-Zebra/genética , Animais , Cromossomos Artificiais Bacterianos/genética , Embrião não Mamífero/citologia , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Microscopia Confocal , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Transgenes , Peixe-Zebra
9.
PLoS Genet ; 7(8): e1002239, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21852962

RESUMO

The identity of the specific molecules required for the process of retinal circuitry formation is largely unknown. Here we report a newly identified zebrafish mutant in which the absence of the atypical cadherin, Celsr3, leads to a specific defect in the development of GABAergic signaling in the inner retina. This mutant lacks an optokinetic response (OKR), the ability to visually track rotating illuminated stripes, and develops a super-normal b-wave in the electroretinogram (ERG). We find that celsr3 mRNA is abundant in the amacrine and ganglion cells of the retina, however its loss does not affect synaptic lamination within the inner plexiform layer (IPL) or amacrine cell number. We localize the ERG defect pharmacologically to a late-stage disruption in GABAergic modulation of ON-bipolar cell pathway and find that the DNQX-sensitive fast b1 component of the ERG is specifically affected in this mutant. Consistently, we find an increase in GABA receptors on mutant ON-bipolar terminals, providing a direct link between the observed physiological changes and alterations in GABA signaling components. Finally, using blastula transplantation, we show that the lack of an OKR is due, at least partially, to Celsr3-mediated defects within the brain. These findings support the previously postulated inner retina origin for the b1 component and reveal a new role for Celsr3 in the normal development of ON visual pathway circuitry in the inner retina.


Assuntos
Caderinas/metabolismo , Neurônios GABAérgicos/metabolismo , Larva/crescimento & desenvolvimento , Segmento Interno das Células Fotorreceptoras da Retina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Células Amácrinas , Animais , Sequência de Bases , Comportamento Animal , Encéfalo/anormalidades , Caderinas/genética , Estimulantes do Sistema Nervoso Central/farmacologia , Códon sem Sentido , Larva/citologia , Larva/genética , Potenciais da Membrana/efeitos dos fármacos , Picrotoxina/farmacologia , Mutação Puntual , Receptores de GABA/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Análise de Sequência de DNA , Transcrição Gênica , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
10.
Hum Mol Genet ; 20(20): 4041-55, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21816947

RESUMO

Ciliopathies are a genetically and phenotypically heterogeneous group of human developmental disorders whose root cause is the absence or dysfunction of primary cilia. Joubert syndrome is characterized by a distinctive hindbrain malformation variably associated with retinal dystrophy and cystic kidney disease. Mutations in CC2D2A are found in ∼10% of patients with Joubert syndrome. Here we describe the retinal phenotype of cc2d2a mutant zebrafish consisting of disorganized rod and cone photoreceptor outer segments resulting in abnormal visual function as measured by electroretinogram. Our analysis reveals trafficking defects in mutant photoreceptors affecting transmembrane outer segment proteins (opsins) and striking accumulation of vesicles, suggesting a role for Cc2d2a in vesicle trafficking and fusion. This is further supported by mislocalization of Rab8, a key regulator of opsin carrier vesicle trafficking, in cc2d2a mutant photoreceptors and by enhancement of the cc2d2a retinal and kidney phenotypes with partial knockdown of rab8. We demonstrate that Cc2d2a localizes to the connecting cilium in photoreceptors and to the transition zone in other ciliated cell types and that cilia are present in these cells in cc2d2a mutants, arguing against a primary function for Cc2d2a in ciliogenesis. Our data support a model where Cc2d2a, localized at the photoreceptor connecting cilium/transition zone, facilitates protein transport through a role in Rab8-dependent vesicle trafficking and fusion.


Assuntos
Cílios/genética , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Animais Geneticamente Modificados , Cílios/metabolismo , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Ligação Proteica , Transporte Proteico , Vesículas Transportadoras/ultraestrutura , Proteínas de Transporte Vesicular/metabolismo , Visão Ocular/genética , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
11.
Cell Rep ; 42(2): 112115, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795565

RESUMO

Mitochondria are vital organelles that require sophisticated homeostatic mechanisms for maintenance. Intercellular transfer of damaged mitochondria is a recently identified strategy broadly used to improve cellular health and viability. Here, we investigate mitochondrial homeostasis in the vertebrate cone photoreceptor, the specialized neuron that initiates our daytime and color vision. We find a generalizable response to mitochondrial stress that leads to loss of cristae, displacement of damaged mitochondria from their normal cellular location, initiation of degradation, and transfer to Müller glia cells, a key non-neuronal support cell in the retina. Our findings show transmitophagy from cones to Müller glia as a response to mitochondrial damage. Intercellular transfer of damaged mitochondria represents an outsourcing mechanism that photoreceptors use to support their specialized function.


Assuntos
Células Fotorreceptoras Retinianas Cones , Peixe-Zebra , Animais , Células Fotorreceptoras Retinianas Cones/metabolismo , Retina/metabolismo , Neuroglia/metabolismo , Mitocôndrias
12.
Metabolites ; 13(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837861

RESUMO

Limited data are available on the effects of pregnancy on the maternal metabolome. Therefore, the objective of this study was to use metabolomics analysis to determine pathways impacted by pregnancy followed by targeted confirmatory analysis to provide more powerful conclusions about metabolic alterations during pregnancy. Forty-seven pregnant women, 18-50 years of age were included in this study, with each subject serving as their own control. Plasma samples were collected between 25 and 28 weeks gestation and again ≥3 months postpartum for metabolomics analysis utilizing an HILIC/UHPLC/MS/MS assay with confirmatory targeted specific concentration analysis for 10 of the significantly altered amino acids utilizing an LC/MS assay. Principle component analysis (PCA) on metabolomics data clearly separated pregnant and postpartum groups and identified outliers in a preliminary assessment. Of the 980 metabolites recorded, 706 were determined to be significantly different between pregnancy and postpartum. Pathway analysis revealed three significantly impacted pathways, arginine biosynthesis (p = 2 × 10-5 and FDR = 1 × 10-3), valine, leucine, and isoleucine metabolism (p = 2 × 10-5 and FDR = 2 × 10-3), and xanthine metabolism (p = 4 × 10-5 and FDR = 4 × 10-3). Of these we focused analysis on arginine biosynthesis and branched-chain amino acid (BCAA) metabolism due to their clinical importance and interconnected roles in amino acid metabolism. In the confirmational analysis, 7 of 10 metabolites were confirmed as significant and all 10 confirmed the direction of change of concentrations observed in the metabolomics analysis. The data support an alteration in urea nitrogen disposition and amino acid metabolism during pregnancy. These changes could also impact endogenous nitric oxide production and contribute to diseases of pregnancy. This study provides evidence for changes in both the ammonia-urea nitrogen and the BCAA metabolism taking place during pregnancy.

13.
Traffic ; 11(9): 1151-67, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20545905

RESUMO

Phosphatidylinositol transfer proteins (PITPs) in yeast co-ordinate lipid metabolism with the activities of specific membrane trafficking pathways. The structurally unrelated metazoan PITPs (mPITPs), on the other hand, are an under-investigated class of proteins. It remains unclear what biological activities mPITPs discharge, and the mechanisms by which these proteins function are also not understood. The soluble class 1 mPITPs include the PITPalpha and PITPbeta isoforms. Of these, the beta-isoforms are particularly poorly characterized. Herein, we report the use of zebrafish as a model vertebrate for the study of class 1 mPITP biological function. Zebrafish express PITPalpha and PITPbeta-isoforms (Pitpna and Pitpnb, respectively) and a novel PITPbeta-like isoform (Pitpng). Pitpnb expression is particularly robust in double cone cells of the zebrafish retina. Morpholino-mediated protein knockdown experiments demonstrate Pitpnb activity is primarily required for biogenesis/maintenance of the double cone photoreceptor cell outer segments in the developing retina. By contrast, Pitpna activity is essential for successful navigation of early developmental programs. This study reports the initial description of the zebrafish class 1 mPITP family, and the first analysis of PITPbeta function in a vertebrate.


Assuntos
Proteínas de Transferência de Fosfolipídeos/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Peixe-Zebra , Animais , Modelos Animais , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/fisiologia , Isoformas de Proteínas , Saccharomyces cerevisiae/genética
14.
Cell Mol Life Sci ; 68(4): 651-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20972813

RESUMO

Zebrafish are unique in that they provide a useful model system for studying two critically important problems in retinal neurobiology, the mechanisms responsible for triggering photoreceptor cell death and the innate stem cell-mediated regenerative response elicited by this death. In this review we highlight recent seminal findings in these two fields. We first focus on zebrafish as a model for studying photoreceptor degeneration. We summarize the genes currently known to cause photoreceptor degeneration, and we describe the phenotype of a few zebrafish mutants in detail, highlighting the usefulness of this model for studying this process. In the second section, we discuss the several different experimental paradigms that are available to study regeneration in the teleost retina. A model outlining the sequence of gene expression starting from the dedifferentiation of Müller glia to the formation of rod and cone precursors is presented.


Assuntos
Células Fotorreceptoras/metabolismo , Regeneração , Retina/fisiologia , Degeneração Retiniana/genética , Peixe-Zebra/genética , Animais , Genes , Modelos Animais , Células Fotorreceptoras/citologia , Células Fotorreceptoras/patologia , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Peixe-Zebra/metabolismo
15.
PLoS Genet ; 5(5): e1000480, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19424431

RESUMO

To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses.


Assuntos
Células Ciliadas Auditivas/fisiologia , Células Ciliadas Vestibulares/fisiologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Processamento Alternativo , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Potenciais Evocados , Células Ciliadas Auditivas/patologia , Células Ciliadas Vestibulares/patologia , Microscopia Eletrônica de Transmissão , Mutação , Fenótipo , Estimulação Física , Vesículas Sinápticas/patologia , Vesículas Sinápticas/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
16.
J Neurosci ; 30(1): 382-9, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20053919

RESUMO

In many retinal diseases, the malfunction that results in photoreceptor loss occurs only in either rods or cones, but degeneration can progress from the affected cell type to its healthy neighbors. Specifically, in human and mouse models of Retinitis Pigmentosa the loss of rods results in the death of neighboring healthy cones. Significantly less is known about cone-initiated degenerations and their affect on neighboring cells. Sometimes rods remain normal after cone death, whereas other patients experience a loss of scotopic vision over time. The affect of cone death on neighboring cones is unknown. The zebrafish is a cone-rich animal model in which the potential for dying cones to kill neighboring healthy cones can be evaluated. We previously reported that the zebrafish cone phosphodiesterase mutant (pde6c(w59)) displays a rapid death of cones soon after their formation and a subsequent loss of rods in the central retina. In this study we examine morphological changes associated with cone death in vivo in pde6c(w59) fish. We then use blastulae transplantations to create chimeric fish with a photoreceptor layer of mixed wild-type (WT) and pde6c(w59) cones. We find that the death of inoperative cones does not cause neighboring WT cone loss. The survival of WT cones is independent of transplant size and location within the retina. Furthermore, transplanted WT cones persist at least several weeks after the initial death of dysfunctional mutant cones. Our results suggest a potential for the therapeutic transplantation of healthy cones into an environment of damaged cones.


Assuntos
Mutação/fisiologia , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Animais , Efeito Espectador/fisiologia , Morte Celular , Degeneração Retiniana/fisiopatologia , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
17.
BMC Dev Biol ; 11: 3, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21261954

RESUMO

BACKGROUND: Appropriate transcriptional regulation is required for cone photoreceptor development and integrity. To date, only a few cis-regulatory elements that control cone photoreceptor-specific expression have been characterised. The alpha-subunit of cone transducin (TαC) is specifically expressed in cone photoreceptors and is required for colour vision. In order to better understand the molecular genetics controlling the initiation of cone photoreceptor-specific expression in vivo, we have utilised zebrafish to identify cis-regulatory elements in the upstream promoter region of the TαC gene. RESULTS: A 0.5 kb TαC promoter fragment is sufficient to direct cone-specific expression in transgenic larvae. Within this minimal promoter, we identify photoreceptor regulatory element-1 (PRE-1), a unique 41 bp sequence. PRE-1 specifically binds nuclear factors expressed in ocular tissue. PRE-1 is not required for cone-specific expression directed from a 2.5 kb TαC promoter. However, PRE-1-like sequences, with potential functional redundancy, are located in this 2.5 kb promoter. PRE-1-rho which has the highest sequence and structural homology to PRE-1 is located in the rhodopsin promoter. Surprisingly, PRE-1 and PRE-1-rho are functionally distinct. We demonstrate that PRE-1, but not PRE-1-rho, is sufficient to enhance expression from a heterologous UV cone promoter. PRE-1 is also sufficient to enhance expression from a heterologous rhodopsin promoter without altering its rod photoreceptor specificity. Finally, mutations in consensus E-box and Otx sites prevent PRE-1 from forming complexes with eye nuclear protein and enhancing photoreceptor expression. CONCLUSIONS: PRE-1 is a novel cis-regulatory module that is sufficient to enhance the initiation of photoreceptor-specific gene expression in differentiating rod and cone photoreceptors.


Assuntos
Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Elementos E-Box/genética , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Larva/genética , Fatores de Transcrição Otx/genética , Sequências Reguladoras de Ácido Nucleico , Rodopsina/genética , Proteínas de Peixe-Zebra/genética
18.
Cell Death Differ ; 27(3): 1067-1085, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31371786

RESUMO

Photoreceptors are specialized neurons that rely on Ca2+ to regulate phototransduction and neurotransmission. Photoreceptor dysfunction and degeneration occur when intracellular Ca2+ homeostasis is disrupted. Ca2+ homeostasis is maintained partly by mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU), which can influence cytosolic Ca2+ signals, stimulate energy production, and trigger apoptosis. Here we discovered that zebrafish cone photoreceptors express unusually low levels of MCU. We expected that this would be important to prevent mitochondrial Ca2+ overload and consequent cone degeneration. To test this hypothesis, we generated a cone-specific model of MCU overexpression. Surprisingly, we found that cones tolerate MCU overexpression, surviving elevated mitochondrial Ca2+ and disruptions to mitochondrial ultrastructure until late adulthood. We exploited the survival of MCU overexpressing cones to additionally demonstrate that mitochondrial Ca2+ uptake alters the distributions of citric acid cycle intermediates and accelerates recovery kinetics of the cone response to light. Cones adapt to mitochondrial Ca2+ stress by decreasing MICU3, an enhancer of MCU-mediated Ca2+ uptake, and selectively transporting damaged mitochondria away from the ellipsoid toward the synapse. Our findings demonstrate how mitochondrial Ca2+ can influence physiological and metabolic processes in cones and highlight the remarkable ability of cone photoreceptors to adapt to mitochondrial stress.


Assuntos
Adaptação Fisiológica , Cálcio/metabolismo , Luz , Metaboloma , Mitocôndrias/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Estresse Fisiológico , Adaptação Fisiológica/efeitos da radiação , Animais , Canais de Cálcio/metabolismo , Citosol/metabolismo , Modelos Animais de Doenças , Isocitrato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Cinética , Transdução de Sinal Luminoso/efeitos da radiação , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Modelos Biológicos , Fenótipo , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Estresse Fisiológico/efeitos da radiação , Peixe-Zebra
19.
Sci Rep ; 10(1): 16041, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994451

RESUMO

Rods and cones use intracellular Ca2+ to regulate many functions, including phototransduction and neurotransmission. The Mitochondrial Calcium Uniporter (MCU) complex is thought to be the primary pathway for Ca2+ entry into mitochondria in eukaryotes. We investigate the hypothesis that mitochondrial Ca2+ uptake via MCU influences phototransduction and energy metabolism in photoreceptors using a mcu-/- zebrafish and a rod photoreceptor-specific Mcu-/- mouse. Using genetically encoded Ca2+ sensors to directly examine Ca2+ uptake in zebrafish cone mitochondria, we found that loss of MCU reduces but does not eliminate mitochondrial Ca2+ uptake. Loss of MCU does not lead to photoreceptor degeneration, mildly affects mitochondrial metabolism, and does not alter physiological responses to light, even in the absence of the Na+/Ca2+, K+ exchanger. Our results reveal that MCU is dispensable for vertebrate photoreceptor function, consistent with its low expression and the presence of an alternative pathway for Ca2+ uptake into photoreceptor mitochondria.


Assuntos
Canais de Cálcio/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Células Fotorreceptoras/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
20.
J Neurosci ; 27(50): 13866-74, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18077698

RESUMO

Photoreceptor degeneration is a common cause of inherited blindness worldwide. We have identified a blind zebrafish mutant with rapid degeneration of cone photoreceptors caused by a mutation in the cone phosphodiesterase c (pde6c) gene, a key regulatory component in cone phototransduction. Some rods also degenerate, primarily in areas with a low density of rods. Rod photoreceptors in areas of the retina that always have a high density of rods are protected from degeneration. Our findings demonstrate that, analogous to what happens to rod photoreceptors in the rd1 mouse model, loss of cone phosphodiesterase leads to rapid degeneration of cone photoreceptors. Furthermore, we propose that cell density plays a key role in determining whether rod photoreceptors degenerate as a secondary consequence to cone degeneration. Our zebrafish mutant serves as a model for developing therapeutic treatments for photoreceptor degeneration in humans.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Modelos Animais de Doenças , Mutação/genética , Células Fotorreceptoras Retinianas Cones/enzimologia , Degeneração Retiniana/genética , Animais , Contagem de Células , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/biossíntese , Progressão da Doença , Eletrorretinografia , Genes Recessivos , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA