RESUMO
Neurodegenerative diseases represent an increasing economic, social, and, above all, medical burden worldwide. The second most prevalent disease in this category is Parkinson's disease, surpassed only by Alzheimer's. It is a treatable but still incurable systemic disease with a pathogenesis that has not yet been elucidated. Several theories are currently being developed to explain the causes and progression of Parkinson's disease. Magnesium is one of the essential macronutrients and is absolutely necessary for life as we know it. The magnesium cation performs several important functions in the cell in the context of energetic metabolism, substrate metabolism, cell signalling, and the regulation of the homeostasis of other ions. Several of these cellular processes have been simultaneously described as being disrupted in the development and progression of Parkinson's disease. The relationship between magnesium homeostasis and the pathogenesis of Parkinson's disease has received little scientific attention to date. The aim of this review is to summarise and critically evaluate the current state of knowledge on the possible role of magnesium in the pathogenesis of Parkinson's disease and to outline possible future directions for research in this area.
Assuntos
Magnésio , Doença de Parkinson , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Humanos , Magnésio/metabolismo , Homeostase , AnimaisRESUMO
In the present study we have shown that treatment of SH-SY5Y cells with either thapsigargin or tunicamycin is associated with a significant decrease in ROUTINE and ATP-coupled mitochondrial respiration as well as a decrease in spare and maximal respiratory capacity. We have also shown that treating cells with either thapsigargin or tunicamycin is associated with significant changes in mitochondrial membrane potential (ΔΨm) generation, which is mainly associated with the reversal of the succinyl-CoA ligase reaction and a decreased activity of complex II. Despite the induction of endoplasmic reticulum (ER) specific unfolded protein response (UPR), as documented by increased expression of HRD1, ER stress did not induce mitochondrial UPR since the expression of both mitochondrial protease LONP1 and mitochondrial chaperone HSP60 was not significantly altered. Inhibition of IRE1α ribonuclease with STF-083010 did not protect the SH-SY5Y cells from ER stress-induced mitochondrial dysfunction. STF-083010 itself had significant impact on both mitochondrial respiration and generation of ΔΨm, which has mainly been associated with the uncoupling of respiratory chain from ATP synthesis.
Assuntos
Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , Linhagem Celular Tumoral , HumanosRESUMO
SLC41A1 (A1) SNPs rs11240569 and rs823156 are associated with altered risk for Parkinson's disease (PD), predominantly in Asian populations, and rs708727 has been linked to Alzheimer's disease (AD). In this study, we have examined a potential association of the three aforementioned SNPs and of rs9438393, rs56152218, and rs61822602 (all three lying in the A1 promoter region) with PD in the Slovak population. Out of the six tested SNPs, we have identified only rs708727 as being associated with an increased risk for PD onset in Slovaks. The minor allele (A) in rs708727 is associated with PD in dominant and completely over-dominant genetic models (ORD = 1.36 (1.05-1.77), p = 0.02, and ORCOD = 1.34 (1.04-1.72), p = 0.02). Furthermore, the genotypic triplet GG(rs708727) + AG(rs823156) + CC(rs61822602) might be clinically relevant despite showing a medium (h ≥ 0.5) size difference (h = 0.522) between the PD and the control populations. RandomForest modeling has identified the power of the tested SNPs for discriminating between PD-patients and the controls to be essentially zero. The identified association of rs708727 with PD in the Slovak population leads us to hypothesize that this A1 polymorphism, which is involved in the epigenetic regulation of the expression of the AD-linked gene PM20D1, is also involved in the pathoetiology of PD (or universally in neurodegeneration) through the same or similar mechanism as in AD.
Assuntos
Doença de Alzheimer/genética , Proteínas de Transporte de Cátions/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Epigênese Genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , EslováquiaRESUMO
Gene SLC41A1 (A1) is localized within Parkinson's disease-(PD)-susceptibility locus PARK16 and encodes for the Na+/Mg2+-exchanger. The association of several A1 SNPs with PD has been studied. Two, rs11240569 and rs823156, have been associated with reduced PD-susceptibility primarily in Asian populations. Here, we examined the association of rs11240569, rs708727, and rs823156 with PD in the Slovak population and their power to discriminate between PD patients and healthy controls. The study included 150 PD patients and 120 controls. Genotyping was performed with the TaqMan® approach. Data were analyzed by conventional statistics and Random Forest machine-learning (ML) algorithm. Individually, none of the three SNPs is associated with an altered risk for PD-onset in Slovaks. However, a combination of genotypes of SNP-triplet GG(rs11240569)/AG(rs708727)/AA(rs823156) is significantly (p < 0.05) more frequent in the PD (13.3%) than in the control (5%) cohort. ML identified the power of the tested SNPs in isolation or of their singlets (joined), duplets and triplets to discriminate between PD-patients and healthy controls as zero. Our data further substantiate differences between diverse populations regarding the association of A1 polymorphisms with PD-susceptibility. Lack of power of the tested SNPs to discriminate between PD and healthy cases render their clinical/diagnostic relevance in the Slovak population negligible.
Assuntos
Proteínas de Transporte de Cátions/genética , Doença de Parkinson/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Transporte de Cátions/sangue , Estudos de Coortes , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Eslováquia , Adulto JovemRESUMO
The aim our study was to investigate protective effect of cobalt chloride (CoCl2) in the model of proteasome stress of neuroblastoma SH-SY5Y cells induced by bortezomib, an inhibitor of 26S proteasome. We have focused our interests on Hsp70 and activation of caspase 3. Finally, we have compared the effect of CoCl2 with an effect of the pre-treatment of the cells with 17-AAG, an inhibitor of Hsp90 that is capable to induce expression of Hsp70, or with IOX2, an inhibitor of isoform 2 of prolyl hydroxylase that increases stability of hypoxia inducible factor 1α (HIF1α). Pre-treatment of SH-SY5Y cells for 24 h with CoCl2, at concentrations of 150 or 250 µmol/l, and with 17-AAG at concentration 1 µmol/l but not with IOX2 at concentration 100 µmol/l, was associated with significantly increased expression of Hsp70. We have shown that pre-treatment of SH-SY5Y cells with CoCl2 but not with 17-AAG or IOX2 was associated with significant delay of the cell death induced by proteasome stress. CoCl2-mediated effect was consistent with inhibition of bortezomib-induced caspase 3 activation in the cells pre-treated with CoCl2. Despite established neuroprotective properties of Hsp70 our results do not provide strong evidence that the effect of CoCl2 could be mainly attributed to the ability of CoCl2 to induce expression of Hsp70 and other mechanisms have to be considered.
RESUMO
A brief period of transient global brain ischemia leads to selective ischemic neurodegeneration associated with death of hippocampal CA1 pyramidal neurons days after reperfusion. The mechanism of such selective and delayed neurodegeneration is still uncertain. Our work aimed to study the involvement of proteasomal and endoplasmic reticulum (ER) stress in ischemic neurodegeneration. We have performed laser scanning confocal microscopy analysis of brain slices from control and experimental animals that underwent global brain ischemia for 15 min and varying times of reperfusion. We have focused on ubiquitin, PUMA, a proapoptotic protein of the Bcl-2 family overexpressed in response to both proteasomal and ER stress, and p53, which controls expression of PUMA. We have also examined the expression of HRD1, an E3 ubiquitin ligase that was shown to be overexpressed after ER stress. We have also examined potential crosstalk between proteasomal and ER stress using cellular models of both proteasomal and ER stress. We demonstrate that global brain ischemia is associated with an appearance of distinct immunoreactivity of ubiquitin, PUMA and p53 in pyramidal neurons of the CA1 layer of the hippocampus 72 h after ischemic insults. Such changes correlate with a delay and selectivity of ischemic neurodegeneration. Immunoreactivity of HRD1 observed in all investigated regions of rat brain was transiently absent in both CA1 and CA3 pyramidal neurones 24 h after ischemia in the hippocampus, which does not correlate with a delay and selectivity of ischemic neurodegeneration. We do not document significant crosstalk between proteasomal and ER stress. Our results favour dysfunction of the ubiquitin proteasome system and consequent p53-induced expression of PUMA as the main mechanisms responsible for selective and delayed degeneration of pyramidal neurons of the hippocampal CA1 layer in response to global brain ischemia.
RESUMO
The aim of our work was to study effect of antidepressant imipramine on both thapsigargin- and tunicamycin-induced ER stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. ER stress in SH-SY5Y cells was induced by either tunicamycin or thapsigargin in the presence or absence of imipramine. Cell viability was tested by the MTT assay. Splicing of XBP1 mRNA was studied by RT-PCR. Finally, expression of Hrd1 and Hsp60 was determined by Western blot analysis. Our findings provide evidence that at high concentrations imipramine potentiates ER stress-induced death of SH-SY5Y cells. The effect of imipramine on ER stress-induced death of SH-SY5Y cells was stronger in combination of imipramine with thapsigargin. In addition, we have found that treatment of SH-SY5Y cells with imipramine in combination of either thapsigargin or tunicamycin is associated with the alteration of ER stress-induced IRE1α-XBP1 signalling. Despite potentiation of ER stress-induced XBP1 splicing, imipramine suppresses both thapsigargin- and tunicamycin-induced expression of Hrd1. Finally, imipramine in combination with thapsigargin, but not tunicamycin, aggravates ER stress-induced mitochondrial dysfunction without significant impact on intracellular mitochondrial content as indicated by the unaltered expression of Hsp60. Our results indicate the possibility that chronic treatment with imipramine might be associated with a higher risk of development and progression of neurodegenerative disorders, in particular those allied with ER stress and mitochondrial dysfunction like Parkinson's and Alzheimer's disease.