Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Biol Chem ; 299(2): 102799, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528062

RESUMO

Collagen triple helices are critical in the function of mannan-binding lectin (MBL), an oligomeric recognition molecule in complement activation. The MBL collagen regions form complexes with the serine proteases MASP-1 and MASP-2 in order to activate complement, and mutations lead to common immunodeficiencies. To evaluate their structure-function properties, we studied the solution structures of four MBL-like collagen peptides. The thermal stability of the MBL collagen region was much reduced by the presence of a GQG interruption in the typical (X-Y-Gly)n repeat compared to controls. Experimental solution structural data were collected using analytical ultracentrifugation and small angle X-ray and neutron scattering. As controls, we included two standard Pro-Hyp-Gly collagen peptides (POG)10-13, as well as three more peptides with diverse (X-Y-Gly)n sequences that represented other collagen features. These data were quantitatively compared with atomistic linear collagen models derived from crystal structures and 12,000 conformations obtained from molecular dynamics simulations. All four MBL peptides were bent to varying degrees up to 85o in the best-fit molecular dynamics models. The best-fit benchmark peptides (POG)n were more linear but exhibited a degree of conformational flexibility. The remaining three peptides showed mostly linear solution structures. In conclusion, the collagen helix is not strictly linear, the degree of flexibility in the triple helix depends on its sequence, and the triple helix with the GQG interruption showed a pronounced bend. The bend in MBL GQG peptides resembles the bend in the collagen of complement C1q and may be key for lectin pathway activation.


Assuntos
Colágeno , Ativação do Complemento , Lectina de Ligação a Manose , Colágeno/química , Lectina de Ligação a Manose/química , Lectina de Ligação a Manose/metabolismo , Soluções/química , Conformação Proteica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Relação Estrutura-Atividade , Estabilidade Proteica , Espalhamento a Baixo Ângulo , Difração de Nêutrons , Ultracentrifugação , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Maleabilidade
2.
Biophys J ; 115(12): 2327-2335, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30527445

RESUMO

Phosphoproteomics studies have reported phosphorylation at multiple sites within collagen, raising the possibility that these post-translational modifications regulate the physical or biological properties of collagen. In this study, molecular dynamics simulations and experimental studies were carried out on model peptides to establish foundational principles of phosphorylation of Ser residues in collagen. A (Gly-Xaa-Yaa)11 peptide was designed to include a Ser-containing sequence from type I collagen that was reported to be phosphorylated. The physiological kinase involved in collagen phosphorylation is not known. In vitro studies showed that a model kinase ERK1 (extracellular signal-regulated protein kinase 1) would phosphorylate Ser within the consensus sequence if the collagen-like peptide is in the denatured state but not in the triple-helical state. The peptide was not a substrate for FAM20C, a kinase present in the secretory pathway, which has been shown to phosphorylate many extracellular matrix proteins. The unfolded single chain (Gly-Xaa-Yaa)11 peptide containing phosphoSer was able to refold to form a stable triple helix but at a reduced folding rate and with a small decrease in thermal stability relative to the nonphosphorylated peptide at neutral pH. These biophysical studies on model peptides provide a basis for investigations into the physiological consequences of collagen phosphorylation and the application of phosphorylation to regulate the properties of collagen biomaterials.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosforilação , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Estabilidade Proteica
3.
J Struct Biol ; 203(3): 247-254, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29763735

RESUMO

Cleavage of collagen by collagenases such as matrix metalloproteinase 1 (MMP-1) is a key step in development, tissue remodeling, and tumor proliferation. The abundant heterotrimeric type I collagen composed of two α1(I) chains and one α2(I) chain is efficiently cleaved by MMP-1 at a unique site in the triple helix, a process which may be initiated by local unfolding within the peptide chains. Atypical homotrimers of the α1(I) chain, found in embryonic and cancer tissues, are very resistant to MMP cleavage. To investigate MMP-1 cleavage, recombinant homotrimers were constructed with sequences from the MMP cleavage regions of human collagen chains inserted into a host bacterial collagen protein system. All triple-helical constructs were cleaved by MMP-1, with α2(I) homotrimers cleaved efficiently at a rate similar to that seen for α1(II) and α1(III) homotrimers, while α1(I) homotrimers were cleaved at a much slower rate. The introduction of destabilizing Gly to Ser mutations within the human collagenase susceptible region of the α2(I) chain did not interfere with MMP-1 cleavage. Molecular dynamics simulations indicated a greater degree of transient hydrogen bond breaking in α2(I) homotrimers compared with α1(I) homotrimers at the MMP-1 cleavage site, and showed an extensive disruption of hydrogen bonding in the presence of a Gly to Ser mutation, consistent with chymotrypsin digestion results. This study indicates that α2(I) homotrimers are susceptible to MMP-1, proves that the presence of an α1(I) chain is not a requirement for α2(I) cleavage, and supports the importance of local unfolding of α2(I) in collagenase cleavage.


Assuntos
Colágeno Tipo I/química , Colagenases/química , Metaloproteinase 1 da Matriz/química , Neoplasias/genética , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Proliferação de Células/genética , Colágeno/química , Colágeno/genética , Colágeno Tipo I/genética , Colagenases/genética , Humanos , Ligação de Hidrogênio , Metaloproteinase 1 da Matriz/genética , Simulação de Dinâmica Molecular , Neoplasias/patologia , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice/genética , Streptococcus pyogenes/química
4.
J Struct Biol ; 203(3): 255-262, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29758270

RESUMO

Gly missense mutations in type I collagen, which replace a conserved Gly in the repeating (Gly-Xaa-Yaa)n sequence with a larger residue, are known to cause Osteogenesis Imperfecta (OI). The clinical consequences of such mutations range from mild to lethal, with more serious clinical severity associated with larger Gly replacement residues. Here, we investigate the influence of the identity of the residue replacing Gly within and adjacent to the integrin binding 502GFPGER507 sequence on triple-helix structure, stability and integrin binding using a recombinant bacterial collagen system. Recombinant collagens were constructed with Gly substituted by Ala, Ser or Val at four positions within the integrin binding region. All constructs formed a stable triple-helix structure with a small decrease in melting temperature. Trypsin was used to probe local disruption of the triple helix, and Gly to Val replacements made the triple helix trypsin sensitive at three of the four sites. Any mutation at Gly505, eliminated integrin binding, while decreased integrin binding affinity was observed in the replacement of Gly residues at Gly502 following the order Val > Ser > Ala. Molecular dynamics simulations indicated that all Gly replacements led to transient disruption of triple-helix interchain hydrogen bonds in the region of the Gly replacement. These computational and experimental results lend insight into the complex molecular basis of the varying clinical severity of OI.


Assuntos
Colágeno Tipo I/química , Osteogênese Imperfeita/genética , Conformação Proteica , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Dicroísmo Circular , Colágeno Tipo I/genética , Colágeno Tipo I/ultraestrutura , Glicina/genética , Humanos , Ligação de Hidrogênio , Mutação de Sentido Incorreto , Osteogênese Imperfeita/patologia , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
5.
Blood ; 127(5): 521-2, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26847065

RESUMO

In this issue of Blood, Zhou et al reported the high-resolution structure of the collagen-activated osteoclast-associated receptor (OSCAR) bound to a collagen model peptide. Together with binding studies, the results confirm a novel recognition mechanism for collagen by immunoglobulin-like motifs.


Assuntos
Colágeno/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Humanos
6.
Biochem J ; 474(13): 2203-2217, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28533266

RESUMO

Collagen adopts a characteristic supercoiled triple helical conformation which requires a repeating (Xaa-Yaa-Gly)n sequence. Despite the abundance of collagen, a combined experimental and atomistic modelling approach has not so far quantitated the degree of flexibility seen experimentally in the solution structures of collagen triple helices. To address this question, we report an experimental study on the flexibility of varying lengths of collagen triple helical peptides, composed of six, eight, ten and twelve repeats of the most stable Pro-Hyp-Gly (POG) units. In addition, one unblocked peptide, (POG)10unblocked, was compared with the blocked (POG)10 as a control for the significance of end effects. Complementary analytical ultracentrifugation and synchrotron small angle X-ray scattering data showed that the conformations of the longer triple helical peptides were not well explained by a linear structure derived from crystallography. To interpret these data, molecular dynamics simulations were used to generate 50 000 physically realistic collagen structures for each of the helices. These structures were fitted against their respective scattering data to reveal the best fitting structures from this large ensemble of possible helix structures. This curve fitting confirmed a small degree of non-linearity to exist in these best fit triple helices, with the degree of bending approximated as 4-17° from linearity. Our results open the way for further studies of other collagen triple helices with different sequences and stabilities in order to clarify the role of molecular rigidity and flexibility in collagen extracellular and immune function and disease.


Assuntos
Colágeno/química , Colágeno/metabolismo , Fragmentos de Peptídeos/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica
7.
Subcell Biochem ; 82: 601-629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28101874

RESUMO

There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.


Assuntos
Colágeno/síntese química , Engenharia de Proteínas/métodos , Proteínas Recombinantes/síntese química , Animais , Colágeno/química , Humanos , Conformação Proteica , Proteínas Recombinantes/química
8.
J Biol Chem ; 291(53): 27073-27086, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27799304

RESUMO

Collagen and fibronectin (Fn) are two key extracellular matrix proteins, which are known to interact and jointly shape matrix structure and function. Most proteins that interact with collagen bind only to the native triple-helical form, whereas Fn is unusual in binding strongly to denatured collagen and more weakly to native collagen. The consequences of replacing a Gly by Ser at each position in the required (Gly-Xaa-Yaa)6 Fn-binding sequence are probed here, using model peptides and a recombinant bacterial collagen system. Fluorescence polarization and solid-state assays indicated that Gly replacements at four sites within the Fn-binding sequence led to decreased Fn binding to denatured collagen. Molecular dynamics simulations showed these Gly replacements interfered with the interaction of a collagen ß-strand with the ß-sheet structure of Fn modules seen in the high resolution crystal structure. Whereas previous studies showed that Gly to Ser mutations within an integrin-binding site caused no major structural perturbations, mutations within the Fn-binding site caused the triple helix to become highly sensitive to trypsin digestion. This trypsin susceptibility is consistent with the significant local unfolding and loss of hydrogen bonding seen in molecular dynamics simulations. Protease sensitivity resulting from mutations in the Fn-binding sequence could lead to degradation of type I collagen, early embryonic lethality, and the scarcity of reported osteogenesis imperfecta mutations in this region.


Assuntos
Colágeno Tipo II/metabolismo , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Glicina/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Colágeno Tipo I/química , Colágeno Tipo I/genética , Colágeno Tipo II/química , Colágeno Tipo II/genética , Cristalografia por Raios X , Fibronectinas/química , Fibronectinas/genética , Glicina/química , Glicina/genética , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Ligação Proteica , Conformação Proteica
9.
J Biol Chem ; 291(36): 19196-207, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432884

RESUMO

The replacement of one Gly in the essential repeating tripeptide sequence of the type I collagen triple helix results in the dominant hereditary bone disorder osteogenesis imperfecta. The mechanism leading to pathology likely involves misfolding and autophagy, although it has been hypothesized that some mutations interfere with known collagen interactions. Here, the effect of Gly replacements within and nearby the integrin binding GFPGER sequence was investigated using a recombinant bacterial collagen system. When a six-triplet human type I collagen sequence containing GFPGER was introduced into a bacterial collagen-like protein, this chimeric protein bound to integrin. Constructs with Gly to Ser substitutions within and nearby the inserted human sequence still formed a trypsin-resistant triple helix, suggesting a small local conformational perturbation. Gly to Ser mutations within the two Gly residues in the essential GFPGER sequence prevented integrin binding and cell attachment as predicted from molecular dynamics studies of the complex. Replacement of Gly residues C-terminal to GFPGER did not affect integrin binding. In contrast, Gly replacements N-terminal to the GFPGER sequence, up to four triplets away, decreased integrin binding and cell adhesion. This pattern suggests either an involvement of the triplets N-terminal to GFPGER in initial binding or a propagation of the perturbation of the triple helix C-terminal to a mutation site. The asymmetry in biological consequences relative to the mutation site may relate to the observed pattern of osteogenesis imperfecta mutations near the integrin binding site.


Assuntos
Colágeno Tipo I/química , Integrina alfa2beta1/química , Substituição de Aminoácidos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Humanos , Integrina alfa2beta1/genética , Integrina alfa2beta1/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Secundária de Proteína
10.
J Biol Chem ; 291(9): 4343-55, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26702058

RESUMO

A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities.


Assuntos
Proteínas de Bactérias/metabolismo , Colágeno Tipo III/metabolismo , Colágeno/metabolismo , Megacariócitos/metabolismo , Modelos Moleculares , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Movimento Celular , Células Cultivadas , Colágeno/química , Colágeno/genética , Colágeno Tipo III/química , Colágeno Tipo III/genética , Receptores com Domínio Discoidina , Sangue Fetal/citologia , Células HEK293 , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/metabolismo , Ligantes , Megacariócitos/citologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/antagonistas & inibidores , Receptores Mitogênicos/química , Receptores Mitogênicos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptococcus pyogenes
11.
J Biol Chem ; 290(40): 24201-9, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26209635

RESUMO

All non-fibrillar collagens contain interruptions in the (Gly-X-Y)n repeating sequence, such as the more than 20 interruptions found in chains of basement membrane type IV collagen. Two selectively doubly labeled peptides are designed to model a site in type IV collagen with a GVG interruption in the α1(IV) and a corresponding GISLK sequence within the α2(IV) chain. CD and NMR studies on a 2:1 mixture of these two peptides support the formation of a single-component heterotrimer that maintains the one-residue staggering in the triple-helix, has a unique chain register, and contains hydrogen bonds at the interruption site. Formation of hydrogen bonds at interruption sites may provide a driving force for self-assembly and chain register in type IV and other non-fibrillar collagens. This study illustrates the potential role of interruptions in the structure, dynamics, and folding of natural collagen heterotrimers and forms a basis for understanding their biological role.


Assuntos
Colágeno Tipo IV/química , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Matriz Extracelular/metabolismo , Glicina/química , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Colágenos não Fibrilares/química , Peptídeos/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
12.
J Biol Chem ; 289(8): 4941-51, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24375478

RESUMO

Interaction of collagen with fibronectin is important for extracellular matrix assembly and regulation of cellular processes. A fibronectin-binding region in collagen was identified using unfolded fragments, but it is not clear if the native protein binds fibronectin with the same primary sequence. A recombinant bacterial collagen is utilized to characterize the sequence requirement for fibronectin binding. Chimeric collagens were generated by inserting the putative fibronectin-binding region from human collagen into the bacterial collagen sequence. Insertion of a sufficient length of human sequence conferred fibronectin affinity. The minimum sequence requirement was identified as a 6-triplet sequence near the unique collagenase cleavage site and was the same in both triple-helix and denatured states. Denaturation of the chimeric collagen increased its affinity for fibronectin, as seen for mammalian collagens. The fibronectin binding recombinant collagen did not contain hydroxyproline, indicating hydroxyproline is not essential for binding. However, its absence may account, in part, for the higher affinity of the native chimeric protein and the lower affinity of the denatured protein compared with type II collagen. Megakaryocytes cultured on chimeric collagen with fibronectin affinity showed improved adhesion and differentiation, suggesting a strategy for generating bioactive materials in biomedical applications.


Assuntos
Colágeno Tipo II/metabolismo , Fibronectinas/metabolismo , Desnaturação Proteica , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Bovinos , Adesão Celular , Proliferação de Células , Colágeno Tipo II/química , Eletroforese em Gel de Poliacrilamida , Fibronectinas/química , Humanos , Megacariócitos/citologia , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/química , Temperatura
13.
J Struct Biol ; 186(3): 451-61, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24434612

RESUMO

A large number of collagen-like proteins have been identified in bacteria during the past 10years, principally from analysis of genome databases. These bacterial collagens share the distinctive Gly-Xaa-Yaa repeating amino acid sequence of animal collagens which underlies their unique triple-helical structure. A number of the bacterial collagens have been expressed in Escherichia coli, and they all adopt a triple-helix conformation. Unlike animal collagens, these bacterial proteins do not contain the post-translationally modified amino acid, hydroxyproline, which is known to stabilize the triple-helix structure and may promote self-assembly. Despite the absence of collagen hydroxylation, the triple-helix structures of the bacterial collagens studied exhibit a high thermal stability of 35-39°C, close to that seen for mammalian collagens. These bacterial collagens are readily produced in large quantities by recombinant methods, either in the original amino acid sequence or in genetically manipulated sequences. This new family of recombinant, easy to modify collagens could provide a novel system for investigating structural and functional motifs in animal collagens and could also form the basis of new biomedical materials with designed structural properties and functions.


Assuntos
Proteínas de Bactérias/química , Colágeno/química , Proteínas Recombinantes/química , Proteínas de Bactérias/genética , Materiais Biocompatíveis , Escherichia coli/genética , Hidroxilação , Mutação de Sentido Incorreto , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Biophys J ; 105(7): 1681-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094409

RESUMO

The contribution of ionic interactions to the stability of the collagen triple helix was studied using molecular dynamics (MD) simulations and biophysical methods. To this end, we examined the stability of a host-guest collagen model peptide, Ac-GPOGPOGPYGXOGPOGPO-NH2, substituting KGE, KGD, EGK, and DGK for the YGX sequence. All-atom, implicit solvent MD simulations show that the fraction of cross-chain ionic interactions formed is different, with the most pronounced in the KGE and KGD sequences, and the least in the DGK sequence. To test whether the fraction of cross-chain ionic interactions correlates with the stability, experimental measurements of thermostability were done using differential scanning calorimetry and circular dichroism spectroscopy. It was found that the melting temperature is very similar for KGE and KGD peptides, whereas the EGK peptide has lower thermostability and the DGK peptide is the least thermostable. A novel, to our knowledge, computational protocol termed temperature-scan MD was applied to estimate the relative stabilities of the peptides from MD simulations. We found an excellent correlation between transition temperatures obtained from temperature-scan MD and those measured experimentally. These results suggest the importance of cross-chain ionic interactions for the stability of collagen triple helix and confirm the utility of MD simulations in predicting interactions and stability in this system.


Assuntos
Colágeno/química , Simulação de Dinâmica Molecular , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Eletricidade Estática , Temperatura
15.
J Biol Chem ; 287(6): 4368-75, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22179614

RESUMO

The standard collagen triple helix requires Gly as every third residue in the amino acid sequence, yet all nonfibrillar collagens contain sites where this repeating pattern is interrupted. To explore the effects of such natural interruptions on the triple helix, a 4- or 15-residue sequence from human basement membrane type IV collagen was introduced between (Gly-Xaa-Yaa)(n) domains within a recombinant bacterial collagen. The interruptions had little effect on melting temperature, consistent with the high thermal stability reported for nonfibrillar collagens. Although the 4-residue interruption cannot be accommodated within a standard triple helix, trypsin and thermolysin resistance indicated a tightly packed structure. Central residues of the 15-residue interruption were protease-susceptible, whereas residues near the (Gly-Xaa-Yaa)(n) boundary were resistant, supporting a transition from an alternate conformation to a well packed triple helix. Both interruptions led to a delay in triple-helix folding, with the 15-residue interruption causing slower folding than the 4-residue interruption. These results suggest that propagation through interruptions represents a slow folding step. To clarify the relation between natural interruptions and pathological mutations, a Gly to Ser missense mutation was placed three triplets away from the 4-residue interruption. As a result of this mutation, the 4-residue interruption and nearby triple helix became susceptible to protease digestion, and an additional folding delay was observed. Because Gly missense mutations that cause disease are often located near natural interruptions, structural and folding perturbations arising from such proximity could be a factor in collagen genetic diseases.


Assuntos
Substituição de Aminoácidos , Colágeno Tipo IV/química , Mutação de Sentido Incorreto , Dobramento de Proteína , Doenças do Colágeno/genética , Doenças do Colágeno/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Glicina/química , Glicina/genética , Glicina/metabolismo , Humanos , Estrutura Secundária de Proteína
16.
J Biol Chem ; 287(27): 22988-97, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22573319

RESUMO

Degradation of fibrillar collagens is important in many physiological and pathological events. These collagens are resistant to most proteases due to the tightly packed triple-helical structure, but are readily cleaved at a specific site by collagenases, selected members of the matrix metalloproteinases (MMPs). To investigate the structural requirements for collagenolysis, varying numbers of GXY triplets from human type III collagen around the collagenase cleavage site were inserted between two triple helix domains of the Scl2 bacterial collagen protein. The original bacterial CL domain was not cleaved by MMP-1 (collagenase 1) or MMP-13 (collagenase 3). The minimum type III sequence necessary for cleavage by the two collagenases was 5 GXY triplets, including 4 residues before and 11 residues after the cleavage site (P4-P11'). Cleavage of these chimeric substrates was not achieved by the catalytic domain of MMP-1 or MMP-13, nor by full-length MMP-3. Kinetic analysis of the chimeras indicated that the rate of cleavage by MMP-1 of the chimera containing six triplets (P7-P11') of collagen III was similar to that of native collagen III. The collagenase-susceptible chimeras were cleaved very slowly by trypsin, a property also seen for native collagen III, supporting a local structural relaxation of the triple helix near the collagenase cleavage site. The recombinant bacterial-human collagen system characterized here is a good model to investigate the specificity and mechanism of action of collagenases.


Assuntos
Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/fisiologia , Colágeno Tipo III/química , Colagenases/genética , Colagenases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Metaloproteinase 13 da Matriz/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Especificidade por Substrato , Tripsina/metabolismo
17.
Bioconjug Chem ; 24(1): 9-16, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23253177

RESUMO

Although fibrous collagens are major structural components of extracellular matrix in mammals, collagen overproduction is associated with many human diseases including cancers and fibrosis. Collagen is typically identified in biomedical research by Western blot and immunohistochemistry; however, anticollagen antibodies employed in these analyses are difficult to prepare and their affinities to collagen can diminish if collagen becomes denatured during analyses. Previously, we discovered that single-stranded collagen mimetic peptides [CMPs, sequence: (GlyProHyp)(9)] can bind to denatured collagen chains by triple helix hybridization. Here, we present collagen-specific staining methods using simple CMPs conjugated to common fluorophores (e.g., carboxyfluorescein), which allow direct detection of collagens and collagen-like proteins in SDS-PAGE and in various mammalian tissue sections. By directly staining SDS-PAGE gels with fluorescently labeled CMPs, both intact (type I, II, and IV) and MMP-1 cleaved collagen (type I) chains as well as complement factor C1q were detected. Collagen bands containing as little as 5 ng were optically visualized, while no staining was observed for fibronectin, laminin, and a collection of proteins from mammalian cell lysate. The CMP was unable to stain collagen-like bacterial protein, which contains numerous charged amino acids that are believed to stabilize triple helix in place of Hyp. We also show that fluorescently labeled CMPs can specifically visualize collagens in fixed tissue sections (e.g., skin, cornea, and bone) more effectively than anticollagen I antibody, and allow facile identification of pathologic conditions in fibrotic liver tissues.


Assuntos
Colágeno/análise , Fluoresceínas/química , Corantes Fluorescentes/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Materiais Biomiméticos/química , Córnea/química , Córnea/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Fígado/química , Fígado/ultraestrutura , Camundongos , Ratos , Pele/química , Pele/ultraestrutura , Coloração e Rotulagem
18.
J Biol Chem ; 286(21): 18960-8, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21454494

RESUMO

To better investigate the relationship between sequence, stability, and folding, the Streptococcus pyogenes collagenous domain CL (Gly-Xaa-Yaa)(79) was divided to create three recombinant triple helix subdomains A, B, and C of almost equal size with distinctive amino acid features: an A domain high in polar residues, a B domain containing the highest concentration of Pro residues, and a very highly charged C domain. Each segment was expressed as a monomer, a linear dimer, and a linear trimer fused with the trimerization domain (V domain) in Escherichia coli. All recombinant proteins studied formed stable triple helical structures, but the stability varied depending on the amino acid sequence in the A, B, and C segments and increased as the triple helix got longer. V-AAA was found to melt at a much lower temperature (31.0 °C) than V-ABC (V-CL), whereas V-BBB melted at almost the same temperature (∼36-37 °C). When heat-denatured, the V domain enhanced refolding for all of the constructs; however, the folding rate was affected by their amino acid sequences and became reduced for longer constructs. The folding rates of all the other constructs were lower than that of the natural V-ABC protein. Amino acid substitution mutations at all Pro residues in the C fragment dramatically decreased stability but increased the folding rate. These results indicate that the thermostability of the bacterial collagen is dominated by the most stable domain in the same manner as found with eukaryotic collagens.


Assuntos
Proteínas de Bactérias/química , Colágeno/química , Dobramento de Proteína , Streptococcus pyogenes/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colágeno/genética , Colágeno/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
19.
J Biol Chem ; 286(3): 2041-6, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21071452

RESUMO

The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/química , Colágeno/química , Glicina/química , Mutação de Sentido Incorreto , Dobramento de Proteína , Streptococcus pyogenes/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colágeno/genética , Colágeno/metabolismo , Glicina/genética , Glicina/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
20.
J Biol Chem ; 286(20): 17512-20, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454493

RESUMO

Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ∼37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ∼37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat.


Assuntos
Proteínas de Bactérias/química , Colágeno/química , Dobramento de Proteína , Streptococcus pyogenes/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colágeno/genética , Colágeno/metabolismo , Temperatura Alta , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA