Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 605(7910): 545-550, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508652

RESUMO

In preparation for mitotic cell division, the nuclear DNA of human cells is compacted into individualized, X-shaped chromosomes1. This metamorphosis is driven mainly by the combined action of condensins and topoisomerase IIα (TOP2A)2,3, and has been observed using microscopy for over a century. Nevertheless, very little is known about the structural organization of a mitotic chromosome. Here we introduce a workflow to interrogate the organization of human chromosomes based on optical trapping and manipulation. This allows high-resolution force measurements and fluorescence visualization of native metaphase chromosomes to be conducted under tightly controlled experimental conditions. We have used this method to extensively characterize chromosome mechanics and structure. Notably, we find that under increasing mechanical load, chromosomes exhibit nonlinear stiffening behaviour, distinct from that predicted by classical polymer models4. To explain this anomalous stiffening, we introduce a hierarchical worm-like chain model that describes the chromosome as a heterogeneous assembly of nonlinear worm-like chains. Moreover, through inducible degradation of TOP2A5 specifically in mitosis, we provide evidence that TOP2A has a role in the preservation of chromosome compaction. The methods described here open the door to a wide array of investigations into the structure and dynamics of both normal and disease-associated chromosomes.


Assuntos
Cromossomos Humanos , Cromossomos , Cromossomos/genética , Cromossomos/metabolismo , Cromossomos Humanos/metabolismo , DNA/química , DNA Topoisomerases Tipo II/genética , Humanos , Mitose , Óptica e Fotônica
2.
Proc Natl Acad Sci U S A ; 120(23): e2304666120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252962

RESUMO

Nonlinear stiffening is a ubiquitous property of major types of biopolymers that make up the extracellular matrices (ECM) including collagen, fibrin, and basement membrane. Within the ECM, many types of cells such as fibroblasts and cancer cells have a spindle-like shape that acts like two equal and opposite force monopoles, which anisotropically stretch their surroundings and locally stiffen the matrix. Here, we first use optical tweezers to study the nonlinear force-displacement response to localized monopole forces. We then propose an effective-probe scaling argument that a local point force application can induce a stiffened region in the matrix, which can be characterized by a nonlinear length scale R* that increases with the increasing force magnitude; the local nonlinear force-displacement response is a result of the nonlinear growth of this effective probe that linearly deforms an increasing portion of the surrounding matrix. Furthermore, we show that this emerging nonlinear length scale R* can be observed around living cells and can be perturbed by varying matrix concentration or inhibiting cell contractility.


Assuntos
Colágeno , Matriz Extracelular , Elasticidade , Biopolímeros , Fibrina
3.
Mol Microbiol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578226

RESUMO

The interplay between bacterial chromosome organization and functions such as transcription and replication can be studied in increasing detail using novel experimental techniques. Interpreting the resulting quantitative data, however, can be theoretically challenging. In this minireview, we discuss how connecting experimental observations to biophysical theory and modeling can give rise to new insights on bacterial chromosome organization. We consider three flavors of models of increasing complexity: simple polymer models that explore how physical constraints, such as confinement or plectoneme branching, can affect bacterial chromosome organization; bottom-up mechanistic models that connect these constraints to their underlying causes, for instance, chromosome compaction to macromolecular crowding, or supercoiling to transcription; and finally, data-driven methods for inferring interpretable and quantitative models directly from complex experimental data. Using recent examples, we discuss how biophysical models can both deepen our understanding of how bacterial chromosomes are structured and give rise to novel predictions about bacterial chromosome organization.

4.
Rep Prog Phys ; 87(5)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38518358

RESUMO

Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.


Assuntos
Desenvolvimento Embrionário , Modelos Biológicos , Movimento Celular/fisiologia
5.
Phys Rev Lett ; 132(9): 098401, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489624

RESUMO

The migratory dynamics of cells can be influenced by the complex microenvironment through which they move. It remains unclear how the motility machinery of confined cells responds and adapts to their microenvironment. Here, we propose a biophysical mechanism for a geometry-dependent coupling between cellular protrusions and the nucleus that leads to directed migration. We apply our model to geometry-guided cell migration to obtain insights into the origin of directed migration on asymmetric adhesive micropatterns and the polarization enhancement of cells observed under strong confinement. Remarkably, for cells that can choose between channels of different size, our model predicts an intricate dependence for cellular decision making as a function of the two channel widths, which we confirm experimentally.


Assuntos
Extensões da Superfície Celular , Movimento Celular
6.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33579821

RESUMO

The migratory dynamics of cells in physiological processes, ranging from wound healing to cancer metastasis, rely on contact-mediated cell-cell interactions. These interactions play a key role in shaping the stochastic trajectories of migrating cells. While data-driven physical formalisms for the stochastic migration dynamics of single cells have been developed, such a framework for the behavioral dynamics of interacting cells still remains elusive. Here, we monitor stochastic cell trajectories in a minimal experimental cell collider: a dumbbell-shaped micropattern on which pairs of cells perform repeated cellular collisions. We observe different characteristic behaviors, including cells reversing, following, and sliding past each other upon collision. Capitalizing on this large experimental dataset of coupled cell trajectories, we infer an interacting stochastic equation of motion that accurately predicts the observed interaction behaviors. Our approach reveals that interacting noncancerous MCF10A cells can be described by repulsion and friction interactions. In contrast, cancerous MDA-MB-231 cells exhibit attraction and antifriction interactions, promoting the predominant relative sliding behavior observed for these cells. Based on these experimentally inferred interactions, we show how this framework may generalize to provide a unifying theoretical description of the diverse cellular interaction behaviors of distinct cell types.


Assuntos
Comunicação Celular , Movimento Celular , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Modelos Teóricos , Análise Espaço-Temporal , Processos Estocásticos
7.
Nat Mater ; 21(6): 703-709, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618822

RESUMO

Upscaling motor protein activity to perform work in man-made devices has long been an ambitious goal in bionanotechnology. The use of hierarchical motor assemblies, as realized in sarcomeres, has so far been complicated by the challenges of arranging sufficiently high numbers of motor proteins with nanoscopic precision. Here, we describe an alternative approach based on actomyosin cortex-like force production, allowing low complexity motor arrangements in a contractile meshwork that can be coated onto soft objects and locally activated by ATP. The design is reminiscent of a motorized exoskeleton actuating protein-based robotic structures from the outside. It readily supports the connection and assembly of micro-three-dimensional printed modules into larger structures, thereby scaling up mechanical work. We provide an analytical model of force production in these systems and demonstrate the design flexibility by three-dimensional printed units performing complex mechanical tasks, such as microhands and microarms that can grasp and wave following light activation.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Impressão Tridimensional
8.
Nature ; 604(7904): 46-47, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379991
10.
Biophys J ; 121(1): 44-60, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34890578

RESUMO

Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.


Assuntos
Caderinas , Neoplasias , Adesão Celular , Comunicação Celular , Movimento Celular , Proliferação de Células , Humanos
11.
Phys Rev Lett ; 127(13): 138101, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34623846

RESUMO

The spatiotemporal organization of bacterial cells is crucial for the active segregation of replicating chromosomes. In several species, including Caulobacter crescentus, the ATPase ParA binds to DNA and forms a gradient along the long cell axis. The ParB partition complex on the newly replicated chromosome translocates up this ParA gradient, thereby contributing to chromosome segregation. A DNA-relay mechanism-deriving from the elasticity of the fluctuating chromosome-has been proposed as the driving force for this cargo translocation, but a mechanistic theoretical description remains elusive. Here, we propose a minimal model to describe force generation by the DNA-relay mechanism over a broad range of operational conditions. Conceptually, we identify four distinct force-generation regimes characterized by their dependence on chromosome fluctuations. These relay force regimes arise from an interplay of the imposed ParA gradient, chromosome fluctuations, and an emergent friction force due to chromosome-cargo interactions.


Assuntos
DNA Bacteriano/metabolismo , Modelos Biológicos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos , DNA Primase/química , DNA Primase/genética , DNA Primase/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética
12.
Proc Natl Acad Sci U S A ; 115(16): 4075-4080, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29618614

RESUMO

Animal cells in tissues are supported by biopolymer matrices, which typically exhibit highly nonlinear mechanical properties. While the linear elasticity of the matrix can significantly impact cell mechanics and functionality, it remains largely unknown how cells, in turn, affect the nonlinear mechanics of their surrounding matrix. Here, we show that living contractile cells are able to generate a massive stiffness gradient in three distinct 3D extracellular matrix model systems: collagen, fibrin, and Matrigel. We decipher this remarkable behavior by introducing nonlinear stress inference microscopy (NSIM), a technique to infer stress fields in a 3D matrix from nonlinear microrheology measurements with optical tweezers. Using NSIM and simulations, we reveal large long-ranged cell-generated stresses capable of buckling filaments in the matrix. These stresses give rise to the large spatial extent of the observed cell-induced matrix stiffness gradient, which can provide a mechanism for mechanical communication between cells.


Assuntos
Forma Celular , Proteínas da Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Linhagem Celular Tumoral , Colágeno/química , Simulação por Computador , Citocalasina D/farmacologia , Combinação de Medicamentos , Elasticidade , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Matriz Extracelular/química , Fibrina/química , Humanos , Laminina/química , Modelos Biológicos , Movimento (Física) , Pinças Ópticas , Proteoglicanas/química , Reologia/métodos , Estresse Mecânico
13.
Biophys J ; 118(3): 552-564, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31864660

RESUMO

Microstructured surfaces provide a unique framework to probe cell migration and cytoskeletal dynamics in a standardized manner. Here, we report on the steady-state occupancy probability of cells in asymmetric two-state microstructures that consist of two fibronectin-coated adhesion sites connected by a thin guidance cue. In these dumbbell-like structures, cells transition between the two sites in a repeated and stochastic manner, and average dwell times in the respective microenvironments are determined from the cell trajectories. We study the dynamics of human breast carcinoma cells (MDA-MB-231) in these microstructures as a function of area, shape, and orientation of the adhesion sites. On square adhesive sites with different areas, we find that the occupancy probability ratio is directly proportional to the ratio of corresponding adhesion site areas. These asymmetries are well captured by a simple model for the stochastic nonlinear dynamics of the cells, which reveals generic features of the motion. Sites of equal area but different shape lead to equal occupancy if shapes are isotropic (e.g., squared or circular). In contrast, an asymmetry in the occupancy is induced by anisotropic shapes like rhombi, triangles, or rectangles that enable motion in the direction perpendicular to the transition axis. Analysis of the two-dimensional motion of cells between two rectangles with orthogonal orientation suggests that cellular transition rates depend on the cell polarization induced by anisotropic micropatterns. Taken together, our results illustrate how two-state micropatterns provide a dynamic migration assay with distinct dwell times and relative cell occupancy as readouts, which may be useful to probe cell-microenvironment interactions.


Assuntos
Comunicação Celular , Citoesqueleto , Anisotropia , Adesão Celular , Movimento Celular , Humanos
14.
Phys Rev Lett ; 125(5): 058103, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794851

RESUMO

Many complex systems, ranging from migrating cells to animal groups, exhibit stochastic dynamics described by the underdamped Langevin equation. Inferring such an equation of motion from experimental data can provide profound insight into the physical laws governing the system. Here, we derive a principled framework to infer the dynamics of underdamped stochastic systems from realistic experimental trajectories, sampled at discrete times and subject to measurement errors. This framework yields an operational method, Underdamped Langevin Inference, which performs well on experimental trajectories of single migrating cells and in complex high-dimensional systems, including flocks with Viscek-like alignment interactions. Our method is robust to experimental measurement errors, and includes a self-consistent estimate of the inference error.


Assuntos
Modelos Teóricos , Movimento , Animais , Comportamento Animal/fisiologia , Movimento Celular/fisiologia , Poeira , Modelos Biológicos , Modelos Químicos , Movimento/fisiologia , Dinâmica não Linear , Densidade Demográfica
15.
Chemphyschem ; 21(15): 1632-1643, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32573925

RESUMO

Enthalpy-entropy compensation (EEC) is very often encountered in chemistry, biology and physics. Its origin is widely discussed since it would allow, for example, a very accurate tuning of the thermodynamic properties as a function of the reactants. However, EEC is often discarded as a statistical artefact, especially when only a limited temperature range is considered. We show that the likeliness of a statistical origin of an EEC can be established with a compensation quality factor (CQF) that depends only on the measured enthalpies and entropies and the experimental temperature range. This is directly derived from a comparison of the CQF with threshold values obtained from a large number of simulations with randomly generated Van 't Hoff plots. The value of CQF is furthermore a direct measure of the existence of a genuine isoequilibrium or isokinetic relationship.

16.
Soft Matter ; 16(2): 544-556, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31808764

RESUMO

Biological assemblies in living cells such as chromosomes constitute large many-body systems that operate in a fluctuating, out-of-equilibrium environment. Since a brute-force simulation of that many degrees of freedom is currently computationally unfeasible, it is necessary to perform coarse-grained stochastic simulations. Here, we develop all tools necessary to write a lattice kinetic Monte-Carlo (LKMC) algorithm capable of performing such simulations. We discuss the validity and limits of this approach by testing the results of the simulation method in simple settings. Importantly, we illustrate how at large external forces Metropolis-Hastings kinetics violate the fluctuation-dissipation and steady-state fluctuation theorems and discuss better alternatives. Although this simulation framework is rather general, we demonstrate our approach using a DNA polymer with interacting SMC condensin loop-extruding enzymes. Specifically, we show that the scaling behavior of the loop-size distributions that we obtain in our LKMC simulations of this SMC-DNA system is consistent with that reported in other studies using Brownian dynamics simulations and analytic approaches. Moreover, we find that the irreversible dynamics of these enzymes under certain conditions result in frozen, sterically jammed polymer configurations, highlighting a potential pitfall of this approach.


Assuntos
Cromossomos Bacterianos/química , Método de Monte Carlo , Algoritmos , Cromossomos Bacterianos/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Cinética
17.
Soft Matter ; 15(40): 8067-8076, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31576897

RESUMO

Biological assemblies such as chromosomes, membranes, and the cytoskeleton are driven out of equilibrium at the nanoscale by enzymatic activity and molecular motors. Similar non-equilibrium dynamics can be realized in synthetic systems, such as chemically fueled colloidal particles. Characterizing the stochastic non-equilibrium dynamics of such active soft assemblies still remains a challenge. Recently, new non-invasive approaches have been proposed to determine the non-equilibrium behavior, which are based on detecting broken detailed balance in the stochastic trajectories of several coordinates of the system. Inspired by the method of two-point microrheology, in which the equilibrium fluctuations of a pair of probe particles reveal the viscoelastic response of an equilibrium system, here, we investigate whether we can extend such an approach to non-equilibrium assemblies: can one extract information on the nature of the active driving in a system from the analysis of a two-point non-equilibrium measure? We address this question theoretically in the context of a class of elastic systems, driven out of equilibrium by a spatially heterogeneous stochastic internal driving. We consider several scenarios for the spatial features of the internal driving that may be relevant in biological and synthetic systems, and investigate how such features of the active noise may be reflected in the long-range scaling behavior of two-point non-equilibrium measures.

18.
Soft Matter ; 15(7): 1481-1487, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608098

RESUMO

The mechanical properties of the cell depend crucially on the tension of its cytoskeleton, a biopolymer network that is put under stress by active motor proteins. While the fibrous nature of the network is known to strongly affect the transmission of these forces to the cellular scale, our understanding of this process remains incomplete. Here we investigate the transmission of forces through the network at the individual filament level, and show that active forces can be geometrically amplified as a transverse motor-generated force "plucks" the fiber and induces a nonlinear tension. In stiff and densely connected networks, this tension results in large network-wide tensile stresses that far exceed the expectation drawn from a linear elastic theory. This amplification mechanism competes with a recently characterized network-level amplification due to fiber buckling, suggesting that that fiber networks provide several distinct pathways for living systems to amplify their molecular forces.

19.
Soft Matter ; 15(2): 331-338, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556571

RESUMO

The production of mechanical stresses in living organisms largely relies on localized, force-generating active units embedded in filamentous matrices. Numerical simulations of discrete fiber networks with fixed boundaries have shown that buckling in the matrix dramatically amplifies the resulting active stresses. Here we extend this result to a continuum elastic medium prone to buckling subjected to an arbitrary external stress, and derive analytical expressions for the active, nonlinear constitutive relations characterizing the full active medium. Inserting these relations into popular "active gel" descriptions of living tissues and the cytoskeleton will enable investigations into nonlinear regimes previously inaccessible due to the phenomenological nature of these theories.

20.
Proc Natl Acad Sci U S A ; 113(11): 2827-32, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921325

RESUMO

Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue.


Assuntos
Tecido Elástico/fisiologia , Modelos Biológicos , Estresse Fisiológico , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiologia , Actomiosina/química , Coagulação Sanguínea , Plaquetas/fisiologia , Citoesqueleto/fisiologia , Humanos , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA