Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genet Med ; 26(9): 101171, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38828701

RESUMO

PURPOSE: Female CHEK2 c.1100delC heterozygotes are eligible for additional breast surveillance because of an increased breast cancer risk. Increased risks for other cancers have been reported. We studied whether CHEK2 c.1100delC is associated with an increased risk for other cancers within these families. METHODS: Including 10,780 individuals from 609 families, we calculated standardized incidence rates (SIRs) and absolute excess risk (AER, per 10,000 person-years) by comparing first-reported cancer derived from the pedigrees with general Dutch population rates from 1970 onward. Attained-age analyses were performed for sites in which significant increased risks were found. Considering the study design, we primarily focused on cancer risk in women. RESULTS: We found significant increased risks of colorectal cancer (CRC; SIR = 1.43, 95% CI = 1.14-1.76; AER = 1.43) and hematological cancers (SIR = 1.32; 95% CI = 1.02-1.67; AER = 0.87). CRC was significantly more frequent from age 45 onward. CONCLUSION: A significantly increased risk of CRC, and hematological cancers in women was found, starting at a younger age than expected. Currently, colorectal surveillance starts at age 45 in high-risk individuals. Our results suggest that some CHEK2 c.1100delC families might benefit from this surveillance as well; however, further research is needed to determine who may profit from this additional colorectal surveillance.


Assuntos
Neoplasias da Mama , Quinase do Ponto de Checagem 2 , Neoplasias Colorretais , Humanos , Quinase do Ponto de Checagem 2/genética , Feminino , Pessoa de Meia-Idade , Neoplasias da Mama/genética , Neoplasias da Mama/epidemiologia , Adulto , Masculino , Neoplasias Colorretais/genética , Neoplasias Colorretais/epidemiologia , Predisposição Genética para Doença , Idoso , Fatores de Risco , Países Baixos/epidemiologia , Proteínas Serina-Treonina Quinases/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/epidemiologia , Linhagem , Incidência , Adolescente , Adulto Jovem
2.
Genet Med ; 26(7): 101126, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38529886

RESUMO

PURPOSE: DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog, a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with division transporter dispatched-1 (DISP1) variants. METHODS: This study was based on the identification of at least 1 pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS: A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor, and congenital nasal pyriform aperture stenosis. These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (ie, oligogenic inheritance). CONCLUSION: The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of Sonic hedgehog. We also demonstrated that the very rare solitary median maxillary central incisor and congenital nasal pyriform aperture stenosis combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.


Assuntos
Alelos , Holoprosencefalia , Fenótipo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anodontia , Fenda Labial/genética , Fenda Labial/patologia , Fissura Palatina/genética , Fissura Palatina/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Heterozigoto , Holoprosencefalia/genética , Holoprosencefalia/patologia , Homozigoto , Incisivo/anormalidades , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genética
3.
J Biol Chem ; 289(32): 22128-39, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24966328

RESUMO

Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-ß and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPß and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis.


Assuntos
Adipócitos/imunologia , Adipócitos/metabolismo , Apresentação de Antígeno , Antígenos CD1d/metabolismo , Proteínas de Transporte/metabolismo , Lipídeos/imunologia , Células 3T3-L1 , Adipogenia/genética , Adipogenia/imunologia , Animais , Antígenos CD1d/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteínas de Transporte/genética , Comunicação Celular/imunologia , Metabolismo Energético , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Células T Matadoras Naturais/imunologia , Transcrição Gênica
4.
Neurol Genet ; 10(5): e200186, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39246741

RESUMO

Background and Objectives: De novo gain-of-function variants in the CACNA1D gene, encoding the L-type voltage-gated Ca2+ channel CaV1.3, cause a multifaceted syndrome. Patients show variable degrees of autism spectrum disorder, developmental delay, epilepsy, and other neurologic and endocrine abnormalities (primary aldosteronism and/or hyperinsulinemic hypoglycemia). We study here a novel variant [c.3506G>A, NM_000720.4, p.(G1169D)] in 2 children with the same CACNA1D mutation but different disease severity. Methods: The clinical data of the study patients were collected. After molecular analysis and cloning by site-directed mutagenesis, patch-clamp recordings of transfected tsA201 cells were conducted in whole-cell configuration. The functional effects of wild-type and mutated channels were analyzed. Results: One child is a severely affected boy with a novel de novo CACNA1D variant with additional clinical symptoms including prenatal-onset tremor, congenital respiratory insufficiency requiring continuous positive airway pressure ventilation, and sensorineural deafness. Despite episodes of hypoglycemia, insulin levels were normal. Aldosterone:renin ratios as a screening parameter for primary aldosteronism were variable. In the second patient, putative mosaicism of the p.(G1169D) variant was associated with a less severe phenotype. Patch-clamp electrophysiology of the p.(G1169D) variant in a heterologous expression system revealed pronounced activity-enhancing gating changes, including a shift of channel activation and inactivation to more hyperpolarized potentials, as well as impaired channel inactivation and deactivation. Despite retained sensitivity to the Ca2+ channel blocker isradipine in vitro, no beneficial effects of isradipine or nifedipine treatment were observed in the index case. Discussion: Through this report, we expand the knowledge about the disease presentation in patients with CACNA1D variants and show the novel variant's modulatory effects on CaV1.3 gating.

5.
Nat Commun ; 13(1): 7090, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402763

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipocyte differentiation, and mutations that interfere with its function cause lipodystrophy. PPARγ is a highly modular protein, and structural studies indicate that PPARγ domains engage in several intra- and inter-molecular interactions. How these interactions modulate PPARγ's ability to activate target genes in a cellular context is currently poorly understood. Here we take advantage of two previously uncharacterized lipodystrophy mutations, R212Q and E379K, that are predicted to interfere with the interaction of the hinge of PPARγ with DNA and with the interaction of PPARγ ligand binding domain (LBD) with the DNA-binding domain (DBD) of the retinoid X receptor, respectively. Using biochemical and genome-wide approaches we show that these mutations impair PPARγ function on an overlapping subset of target enhancers. The hinge region-DNA interaction appears mostly important for binding and remodelling of target enhancers in inaccessible chromatin, whereas the PPARγ-LBD:RXR-DBD interface stabilizes the PPARγ:RXR:DNA ternary complex. Our data demonstrate how in-depth analyses of lipodystrophy mutants can unravel molecular mechanisms of PPARγ function.


Assuntos
Lipodistrofia , PPAR gama , Humanos , PPAR gama/genética , PPAR gama/metabolismo , Adipócitos/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Lipodistrofia/metabolismo , Sequências Reguladoras de Ácido Nucleico
6.
Front Endocrinol (Lausanne) ; 12: 624112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716977

RESUMO

The proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is one of the most extensively studied ligand-inducible transcription factors. Since its identification in the early 1990s, PPARγ is best known for its critical role in adipocyte differentiation, maintenance, and function. Emerging evidence indicates that PPARγ is also important for the maturation and function of various immune system-related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes. Furthermore, PPARγ controls cell proliferation in various other tissues and organs, including colon, breast, prostate, and bladder, and dysregulation of PPARγ signaling is linked to tumor development in these organs. Recent studies have shed new light on PPARγ (dys)function in these three biological settings, showing unified and diverse mechanisms of action. Classical transactivation-where PPARγ activates genes upon binding to PPAR response elements as a heterodimer with RXRα-is important in all three settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and gain-of-function mutations in tumors. Transrepression-where PPARγ alters gene expression independent of DNA binding-is particularly relevant in immune cells. Interestingly, gene translocations resulting in fusion of PPARγ with other gene products, which are unique to specific carcinomas, present a third mode of action, as they potentially alter PPARγ's target gene profile. Improved understanding of the molecular mechanism underlying PPARγ activity in the complex regulatory networks in metabolism, cancer, and inflammation may help to define novel potential therapeutic strategies for prevention and treatment of obesity, diabetes, or cancer.


Assuntos
Metabolismo Energético/fisiologia , Sistema Imunitário/metabolismo , Neoplasias/metabolismo , PPAR gama/metabolismo , Adipócitos/metabolismo , Animais , Humanos
7.
Mol Metab ; 20: 115-127, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30595551

RESUMO

OBJECTIVE: The nuclear receptor PPARγ is the master regulator of adipocyte differentiation, distribution, and function. In addition, PPARγ induces terminal differentiation of several epithelial cell lineages, including colon epithelia. Loss-of-function mutations in PPARG result in familial partial lipodystrophy subtype 3 (FPDL3), a rare condition characterized by aberrant adipose tissue distribution and severe metabolic complications, including diabetes. Mutations in PPARG have also been reported in sporadic colorectal cancers, but the significance of these mutations is unclear. Studying these natural PPARG mutations provides valuable insights into structure-function relationships in the PPARγ protein. We functionally characterized a novel FPLD3-associated PPARγ L451P mutation in helix 9 of the ligand binding domain (LBD). Interestingly, substitution of the adjacent amino acid K450 was previously reported in a human colon carcinoma cell line. METHODS: We performed a detailed side-by-side functional comparison of these two PPARγ mutants. RESULTS: PPARγ L451P shows multiple intermolecular defects, including impaired cofactor binding and reduced RXRα heterodimerisation and subsequent DNA binding, but not in DBD-LBD interdomain communication. The K450Q mutant displays none of these functional defects. Other colon cancer-associated PPARγ mutants displayed diverse phenotypes, ranging from complete loss of activity to wildtype activity. CONCLUSIONS: Amino acid changes in helix 9 can differently affect LBD integrity and function. In addition, FPLD3-associated PPARγ mutations consistently cause intra- and/or intermolecular defects; colon cancer-associated PPARγ mutations on the other hand may play a role in colon cancer onset and progression, but this is not due to their effects on the most well-studied functional characteristics of PPARγ.


Assuntos
Lipodistrofia Parcial Familiar/genética , Mutação de Sentido Incorreto , PPAR gama/genética , Adulto , Sítios de Ligação , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Células HEK293 , Humanos , Lipodistrofia Parcial Familiar/patologia , PPAR gama/química , PPAR gama/metabolismo , Fenótipo , Multimerização Proteica
8.
Endocrinology ; 159(6): 2397-2407, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718163

RESUMO

Nuclear receptors (NRs) are ligand-inducible transcription factors that play critical roles in metazoan development, reproduction, and physiology and therefore are implicated in a broad range of pathologies. The transcriptional activity of NRs critically depends on their interaction(s) with transcriptional coregulator proteins, including coactivators and corepressors. Short leucine-rich peptide motifs in these proteins (LxxLL in coactivators and LxxxIxxxL in corepressors) are essential and sufficient for NR binding. With 350 different coregulator proteins identified to date and with many coregulators containing multiple interaction motifs, an enormous combinatorial potential is present for selective NR-mediated gene regulation. However, NR-coregulator interactions have often been determined experimentally on a one-to-one basis across diverse experimental conditions. In addition, NR-coregulator interactions are difficult to predict because the molecular determinants that govern specificity are not well established. Therefore, many biologically and clinically relevant NR-coregulator interactions may remain to be discovered. Here, we present a comprehensive overview of 3696 NR-coregulator interactions by systematically characterizing the binding of 24 nuclear receptors with 154 coregulator peptides. We identified unique ligand-dependent NR-coregulator interaction profiles for each NR, confirming many well-established NR-coregulator interactions. Hierarchical clustering based on the NR-coregulator interaction profiles largely recapitulates the classification of NR subfamilies based on the primary amino acid sequences of the ligand-binding domains, indicating that amino acid sequence is an important, although not the only, molecular determinant in directing and fine-tuning NR-coregulator interactions. This NR-coregulator peptide interactome provides an open data resource for future biological and clinical discovery as well as NR-based drug design.


Assuntos
Proteínas Correpressoras/genética , Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas/métodos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/genética , Animais , Análise por Conglomerados , Proteínas Correpressoras/metabolismo , Bases de Dados de Proteínas/normas , Bases de Dados de Proteínas/provisão & distribuição , Desenho de Fármacos , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Filogenia , Ligação Proteica , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/metabolismo
9.
Front Physiol ; 9: 1363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319454

RESUMO

Genetic lipodystrophies are a group of rare syndromes associated with major metabolic complications - including severe insulin resistance, type 2 diabetes mellitus, and hypertriglyceridemia - which are classified according to the distribution of adipose tissue. Lipodystrophies can be present at birth or develop during life and can range from local to partial and general. With at least 18 different genes implicated so far, definite diagnosis can be challenging due to clinical and genetic heterogeneity. In an adult female patient with clinical and metabolic features of partial lipodystrophy we identified via whole genome sequencing (WGS) a single complex AGPAT2 allele [V67M;V167A], functionally equivalent to heterozygosity. AGPAT2 encodes for an acyltransferase implicated in the biosynthesis of triacylglycerol and glycerophospholipids. So far homozygous and compound heterozygous mutations in AGPAT2 have only been associated with generalized lipodystrophy. A SNP risk score analysis indicated that the index patient is not predisposed to lipodystrophy based on her genetic background. The partial phenotype in our patient is therefore more likely associated to the genetic variants in AGPAT2. To test whether the resulting double-mutant AGPAT2 protein is functional we analyzed its in vitro enzymatic activity via mass spectrometry. The resulting AGPAT2 double mutant is enzymatically inactive. Our data support the view that the current classification of lipodystrophies as strictly local, partial or generalized may have to be re-evaluated and viewed more as a continuum, both in terms of clinical presentation and underlying genetic causes. Better molecular understanding of lipodystrophies may lead to new therapies to treat adipose tissue dysfunction in common and rare diseases.

10.
Nat Genet ; 48(12): 1570-1575, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27749844

RESUMO

Clinical exome sequencing routinely identifies missense variants in disease-related genes, but functional characterization is rarely undertaken, leading to diagnostic uncertainty. For example, mutations in PPARG cause Mendelian lipodystrophy and increase risk of type 2 diabetes (T2D). Although approximately 1 in 500 people harbor missense variants in PPARG, most are of unknown consequence. To prospectively characterize PPARγ variants, we used highly parallel oligonucleotide synthesis to construct a library encoding all 9,595 possible single-amino acid substitutions. We developed a pooled functional assay in human macrophages, experimentally evaluated all protein variants, and used the experimental data to train a variant classifier by supervised machine learning. When applied to 55 new missense variants identified in population-based and clinical sequencing, the classifier annotated 6 variants as pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis and prospective experimental characterization can support immediate diagnostic interpretation of newly discovered missense variants in disease-related genes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Lipodistrofia/genética , Mutação de Sentido Incorreto/genética , Infarto do Miocárdio/genética , PPAR gama/genética , Substituição de Aminoácidos , Estudos de Casos e Controles , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA