Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Opt Express ; 31(11): 17964-17986, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381517

RESUMO

Laser ablation is nowadays an extensively applied technology to probe the chemical composition of solid materials. It allows for precise targeting of micrometer objects on and in samples, and enables chemical depth profiling with nanometer resolution. An in-depth understanding of the 3D geometry of the ablation craters is crucial for precise calibration of the depth scale in chemical depth profiles. Herein we present a comprehensive study on laser ablation processes using a Gaussian-shaped UV-femtosecond irradiation source and present how the combination of three different imaging methods (scanning electron microscopy, interferometric microscopy, and X-ray computed tomography) can provide accurate information on the crater's shapes. Crater analysis by applying X-ray computed tomography is of considerable interest because it allows the imaging of an array of craters in one step with sub-µm accuracy and is not limited to the aspect ratio of the crater. X-ray computed tomography thereby complements the analysis of laser ablation craters. The study investigates the effect of laser pulse energy and laser burst count on a single crystal Ru(0001) sample. Single crystals ensure that there is no dependence on the grain orientations during the laser ablation process. An array of 156 craters of different dimensions ranging from <20 nm to ∼40 µm in depth were created. For each individually applied laser pulse, we measured the number of ions generated in the ablation plume with our laser ablation ionization mass spectrometer. We show to which extent the combination of these four techniques reveals valuable information on the ablation threshold, the ablation rate, and the limiting ablation depth. The latter is expected to be a consequence of decreasing irradiance upon increasing crater surface area. The ion signal generated was found to be proportional to the volume ablated up to the certain depth, which enables in-situ depth calibration during the measurement.

2.
Chimia (Aarau) ; 77(3): 104-109, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047811

RESUMO

By using silver (Ag) in nanostructured (nanowire, nanosphere, etc.) or thin-layer form as a catalyst for electrochemical CO2 reduction, very high CO-forming selectivity of almost 100% can be achieved. Supported by gas diffusion layers (GDLs),  the reactant CO2 in the gas phase can approach and potentially access active Ag sites, which allows current densities in the range of a few hundred mA cm-2 to be reached. Yet, the stability of gas diffusion electrode (GDE) based electrochemical CO2-to-CO converters is far from perfect, and the activity of GDE cathodes, especially when operated at high current densities, often significantly decays during electrolyses after no more than a few hours. The primary reason of stability losses in GDE-based CO2-to-CO electrolysers is flooding: that is, the excess wetting of the GDE that prevents CO2 from reaching Ag catalytic sites. In the past years, the authors of this paper at Empa and at the University of Bern, cooperating with other partners of the National Competence Center for Research (NCCR) on Catalysis, took different approaches to overcome flooding. While opinions differ with regard to where the first line of defense in protecting GDEs from flooding should lie, a comparison of the recent results of the two groups gives unique insight into the nature of processes occurring in GDE cathodes used for CO2 electrolysis.

3.
Angew Chem Int Ed Engl ; 62(20): e202218575, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36922903

RESUMO

The dynamic restructuring of Cu surfaces in electroreduction conditions is of fundamental interest in electrocatalysis. We decode the structural dynamics of a Cu(111) electrode under reduction conditions by joint first-principles calculations and operando electrochemical scanning tunneling microscopy (ECSTM) experiments. Combining global optimization and grand canonical density functional theory, we unravel the potential- and pH-dependent restructuring of Cu(111) in acidic electrolyte. At reductive potential, Cu(111) is covered by a high density of H atoms and, below a threshold potential, Cu adatoms are formed on the surface in a (4×4) superstructure, a restructuring unfavorable in vacuum. The strong H adsorption is the driving force for the restructuring, itself induced by the electrode potential. On the restructured surface, barriers for hydrogen evolution reaction steps are low. Restructuring in electroreduction conditions creates highly active Cu adatom sites not present on Cu(111).

4.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502377

RESUMO

Platinum compounds such as cisplatin (cisPt) embody the backbone of combination chemotherapy protocols against advanced lung cancer. However, their efficacy is primarily limited by inherent or acquired platinum resistance, the origin of which has not been fully elucidated yet, although of paramount interest. Using single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), this study quantifies cisPt in single cancer cells and for the first time in isolated nuclei. A comparison of cisPt uptake was performed between a wild type (wt) cancer cell line and related resistant sublines. In both, resistant cells, wt cells, and their nuclei, cisPt uptake was measured at different incubation times. A lower amount of cisPt was found in resistant cell lines and their nuclei compared to wt cells. Moreover, the abundance of internalized cisPt decreased with increasing resistance. Interestingly, concentrations of cisPt found within the nuclei were higher than compared to cellular concentrations. Here, we show, that SC-ICP-MS allows precise and accurate quantification of metallodrugs in both single cells and cell organelles such as nuclei. These findings pave the way for future applications investigating the potency and efficacy of novel metallodrugs developed for cancer treatment.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Espectrometria de Massas/métodos , Neoplasias/tratamento farmacológico , Análise de Célula Única/métodos , Análise Espectral
5.
Chimia (Aarau) ; 75(9): 733-743, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526178

RESUMO

In this mini-review we compare two prototypical metal foam electrocatalysts applied to the transformation of CO2 into value-added products (e.g. alcohols on Cu foams and formate on Bi foams). A substantial improvement in the catalyst performance is typically achieved through thermal annealing of the as-deposited foam materials, followed by the electro-reduction of the pre-formed oxidic precursors prior or during the actual CO2 electrolysis. Utilizing highly insightful and sensitive complementary operando analytical techniques (XAS, XRD, and Raman spectroscopy) we demonstrate that this catalyst pre-activation process is entirely accomplished in case of the oxidized Cu foams prior to the formation of hydrocarbons and alcohols from the CO2. The actually active catalyst is therefore the metallic Cu derived from the precursor by means of oxide electro-reduction. Conversely, in their oxidic form, the Cu-based foam catalysts are inactive towards the CO2 reduction reaction (denoted ec-CO2 RR). Oxidized Bi foams can be regarded as an excellent counter example to the above-mentioned Cu case as both metallic and the thermally derived oxidic Bi foams are highly active towards ec-CO2 RR (formate production). Indeed, operando Raman spectroscopy reveals that CO2 electrolysis occurs upon its embedment into the oxidic Bi2O3 foam precursor, which itself undergoes partial transformation into an active sub-carbonate phase. The potential-dependent transition of sub-carbonates/oxides into the corresponding metallic Bi foam dictates the characteristic changes of the ec-CO2 RR pathway. Identical location (IL) microscopic inspection of the catalyst materials, e.g. by means of scanning electron microscopy, demonstrates substantial morphological alterations on the nm length scale on the material surface as consequence of the sub-carbonate formation and the potential-driven oxide reduction into the metallic Bi foam. The foam morphology on a mesoscopic length scale (macroporosity) remains, by contrast, fully unaffected by these phase transitions.

6.
Chimia (Aarau) ; 75(3): 163-168, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33766198

RESUMO

Metallic nanoparticles of different shape can be used as efficient electrocatalysts for many technologically and environmentally relevant processes, like the electroreduction of CO2. Intense research is thus targeted at finding the morphology of nanosized features that best suits catalytic needs. In order to control the shape and size distribution of the designed nanoobjects, and to prevent their aggregation, synthesis routes often rely on the use of organic capping agents (surfactants). It is known, however, that these agents tend to remain adsorbed on the surface of the synthesized nanoparticles and may significantly impair their catalytic performance, both in terms of overall yield and of product selectivity. It thus became a standard procedure to apply certain methods (e.g. involving UV-ozone or plasma treatments) for the removal of capping agents from the surface of nanoparticles, before they are used as catalysts. Proper design of the operating procedure of the electrocatalysis process may, however, render such cleaning steps unnecessary. In this paper we use poly-vinylpyrrolidone (PVP) capped Ag nanocubes to demonstrate a mere electrochemical, operando activation method. The proposed method is based on an observed hysteresis of the catalytic yield of CO (the desired product of CO2 electroreduction) as a function of the applied potential. When as-synthesized nanocubes were directly used for CO2 electroreduction, the CO yield was rather low at moderate overpotentials. However, following a potential excursion to more negative potentials, most of the (blocking) PVP was irreversibly removed from the catalyst surface, allowing a significantly higher catalytic yield even under less harsh operating conditions. The described hysteresis of the product distribution is shown to be of transient nature, and following operando activation by a single 'break-in' cycle, a truly efficient catalyst was obtained that retained its stability during long hours of operation.

7.
Anal Chem ; 92(6): 4301-4308, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32081004

RESUMO

The use of rotating disk electrodes (RDEs) is probably the most convenient way of studying simple electrode reactions under well-defined transport conditions. Standard RDEs become, however, less expedient when the studied electrode process is a complex one, leading to the formation of various reaction products. In these cases, the accurate detection and quantification of the formed products are desirable. If the formed products are gaseous, then the usual way of quantifying them is the use of online gas chromatography (GC), a method that is not compatible with open RDE cells. In order to overcome these difficulties, we present here a sophisticated inverted RDE (iRDE) cell design. The design combines various advantages: it is amenable to the same mathematical treatment as standard (downward-facing) RDEs; it can be operated airtight and coupled to online GC; and due to its upward-facing design, the electrode surface is less prone to blockage by any formed gas bubbles. The iRDE&GC design is tested using simple model reactions and is demonstratively used for studying the electrochemical reduction of CO2, accompanied by parasitic hydrogen evolution, on a silver electrode.

8.
Chemistry ; 25(66): 15141-15146, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31529793

RESUMO

Providing a chemical control over charge transport through molecular junctions is vital to developing sensing applications at the single-molecule scale. Quantum-interference effects that affect the charge transport through molecules offer a unique chance to enhance the chemical control. Here, we investigate how interference effects can be harnessed to optimize the response of single molecule dithienoborepin (DTB) junctions to the specific coordination of a fluoride ion in solution. The single-molecule conductance of two DTB isomers is measured using scanning tunneling microscopy break-junction (STM-BJ) before and after fluoride ion exposure. We find a significant change of conductance before and after the capture of a fluoride ion, the magnitude of which depends on the position of the boron atom in the molecular structure. This single-molecule sensor exhibits switching ratios of up to four orders of magnitudes, suggesting that the boron-fluoride coordination can lead to quantum-interference effects. This is confirmed by a quantum chemical characterization, pointing toward a cross-conjugated path through the molecular structure as the origin of the effect.

9.
Chimia (Aarau) ; 73(9): 707-713, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31514770

RESUMO

Herein, we discuss recent research activities on the electrochemical water/CO2 co-electrolysis at the Department of Chemistry and Biochemistry of the University of Bern (Arenz and Broekmann research groups). For the electrochemical conversion of the greenhouse gas CO2 into products of higher value catalysts for two half-cell reactions need to be developed, i.e. catalysts for the reductive conversion of CO2 (CO2RR) as well as catalysts for the oxidative splitting of water (OER: Oxygen Evolution Reaction). In research, the catalysts are often investigated independently of each other as they can later easily be combined in a technical electrolysis cell. CO2RR catalysts consist of abundant materials such as copper and silver and thus mainly the product selectivity of the respective catalyst is in focus of the investigation. In contrast to that, OER catalysts (in acidic conditions) mainly consist of precious metals, e.g. Ir, and therefore the minimization of the catalytic current per gram Ir is of fundamental importance.

10.
Chimia (Aarau) ; 73(11): 922-927, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753073

RESUMO

In this work, we discuss the application of a gas diffusion electrode (GDE) setup for benchmarking electrocatalysts for the reductive conversion of CO2 (CO2 RR: CO2 reduction reaction). Applying a silver nanowire (Ag-NW) based catalyst, it is demonstrated that in the GDE setup conditions can be reached, which are relevant for the industrial conversion of CO2 to CO. This reaction is part of the so-called 'Rheticus' process that uses the CO for the subsequent production of butanol and hexanol based on a fermentation approach. In contrast to conventional half-cell measurements using a liquid electrolyte, in the GDE setup CO2 RR current densities comparable to technical cells (>100 mA cm-2) are reached without suffering from mass transport limitations of the CO2 reactant gas. The results are of particular importance for designing CO2 RR catalysts exhibiting high faradaic efficiencies towards CO at technological reaction rates.

11.
Anal Chem ; 90(4): 2692-2700, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29400952

RESUMO

State-of-the-art laser ablation (LA) depth-profiling techniques (e.g. LA-ICP-MS, LIBS, and LIMS) allow for chemical composition analysis of solid materials with high spatial resolution at micro- and nanometer levels. Accurate determination of LA-volume is essential to correlate the recorded chemical information to the specific location inside the sample. In this contribution, we demonstrate two novel approaches towards a better quantitative analysis of LA craters with dimensions at micrometer level formed by femtosecond-LA processes on single-crystalline Si(100) and polycrystalline Cu model substrates. For our parametric crater evolution studies, both the number of applied laser shots and the pulse energy were systematically varied, thus yielding 2D matrices of LA craters which vary in depth, diameter, and crater volume. To access the 3D structure of LA craters formed on Si(100), we applied a combination of standard lithographic and deep reactive-ion etching (DRIE) techniques followed by a HR-SEM inspection of the previously formed crater cross sections. As DRIE is not applicable for other material classes such as metals, an alternative and more versatile preparation technique was developed and applied to the LA craters formed on the Cu substrate. After the initial LA treatment, the Cu surface was subjected to a polydimethylsiloxane (PDMS) casting process yielding a mold being a full 3D replica of the LA craters, which was then analyzed by HR-SEM. Both approaches revealed cone-like shaped craters with depths ranging between 1 and 70 µm and showed a larger ablation depth of Cu that exceed the one of Si by a factor of about 3.

12.
Anal Chem ; 90(11): 6666-6674, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29722528

RESUMO

State-of-the-art three-dimensional very large-scale integration (3D-VLSI) relies, among other factors, on the purity of high-aspect-ratio Cu interconnects such as through-silicon-vias (TSVs). Accurate spatial chemical analysis of electroplated TSV structures has been proven to be challenging due to their large aspect ratios and their multimaterial composition (Cu and Si) with distinct physical properties. Here, we demonstrate that these structures can be accurately analyzed by femtosecond (fs) laser beam ablation techniques in combination with ionization mass spectrometry (LIMS). We specifically report on novel preparation approaches for the postablation analysis of craters formed upon TSV depth profiling. The novel TSV sample preparation is based on deep and material-selective reactive-ion etching of the Si matrix surrounding the Cu interconnects thus facilitating systematic focused-ion-beam (FIB) investigations of the high-aspect-ratio TSV structures upon ablation. The particular structure of the TSV analyte combined with the ⌀beam > ⌀Cu-TSV condition allowed for an in-depth investigation of fundamental laser ablation processes, particularly focusing on the redeposition of ablated material at the inner side-walls of the LIMS craters. This phenomenon is of imminent importance for the ultimate quantification in any laser ablation-based depth profiling. In addition, we have developed a new method which allows the unambiguous determination of the crossing-point of the Si/Cu||bare Si interface upon Cu-TSV depth profiling which is based on pronounced, depth-dependent changes in the mass-spectrometric detection of those Si xy+ species formed upon the LIMS depth erosion.

13.
Anal Chem ; 90(8): 5179-5186, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578694

RESUMO

Through-silicon-via (TSV) technology enables 3D integration of multiple 2D components in advanced microchip architectures. Key in the TSV fabrication is an additive-assisted Cu electroplating process in which the additives employed may get embedded in the TSV body. This incorporation negatively influences the reliability and durability of the Cu interconnects. Here, we present a novel approach toward the chemical analysis of TSVs which is based on femtosecond laser ablation ionization mass spectrometry (fs-LIMS). The conditions for LIMS depth profiling were identified by a systematic variation of the laser pulse energy and the number of laser shots applied. In this contribution, new aspects are addressed related to the analysis of highly heterogeneous specimens having dimensions in the range of the probing beam itself. Particularly challenging were the different chemical and physical properties of which the target specimens were composed. Depth profiling of the TSVs along their main axis (approach 1) revealed a gradient in the carbon (C) content. These differences in the C concentration inside the TSVs could be confirmed and quantified by LIMS analyses of cross-sectionally sliced TSVs (approach 2). Our quantitative analysis revealed a C content that is ∼1.5 times higher at the TSV top surface compared to its bottom. Complementary Scanning Auger Microscopy (SAM) data confirmed a preferential embedment of suppressor additives at the side walls of the TSV. These results demonstrate that the TSV filling concept significantly deviates from common Damascene electroplating processes and will therefore contribute to a more comprehensive, mechanistic understanding of the underlying mechanisms.

15.
Anal Chem ; 89(3): 1632-1641, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28105805

RESUMO

Femtosecond laser ablation/ionization mass spectrometry (LIMS) has been applied to probe the spatial element composition of three ternary Cu-Sn-Pb model bronze alloys (lead bronzes: CuSn10Pb10, CuSn7Pb15, and CuSn5Pb20), which were recently identified as high-performance cathode materials in the context of electro-organic synthesis (dehalogenation, deoxygenation) of pharmaceutically relevant building blocks. The quantitative and spatially resolved element analysis of such cathode materials will help in understanding the observed profound differences in their electrochemical reactivity and stability. For that purpose, we developed a measurement procedure using the LIMS technique which allows analyzing the element composition of these ternary alloys in all three spatial dimensions. Their chemical composition was determined spotwise, by ablating material from various surface locations on a 4 × 4 raster array (50 µm pitch distance, ablation crater diameter of ∼20 µm). The element analyses show significant chemical inhomogeneities in all three ternary bronze alloys with profound local deviations from their nominal bulk compositions and indicate further differences in the nature and origin of these compositional inhomogeneities. In addition, the element analyses showed specific compositional correlations among the major elements (Cu, Sn, and Pb) in these alloys. On selected sample positions minor (Ni, Zn, Ag, and Sb) and trace elements (C, P, Fe, and As) were quantified. These results are in agreement with inductively coupled plasma collision/reaction interface mass spectrometry (ICP-CRI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) reference measurements, thus proving the LIMS depth profiling technique as a powerful alternative methodology to conventional quantification techniques with the advantage, however, of a highly localized measurement capability.

16.
Chemphyschem ; 18(22): 3153-3162, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28872751

RESUMO

Room-temperature ionic liquids (RTILs) are promising new electrolytes for efficient carbon dioxide reduction. However, due to their high viscosity, the mass transport of CO2 in RTILs is typically slow, at least one order of magnitude slower than in aqueous systems. One possibility to improve mass transport in RTILs is to decrease their viscosity through dilution with water. Herein, defined amounts of water are added to 1-butyl-3methylimidazolium tetrafluoroborate ([BMIm][BF4 ]), which is a hydrophilic RTIL. Electrochemical measurements on quiescent and hydrodynamic systems both indicate enhanced CO2 electroreduction. This enhancement has its origin in thermodynamic/kinetic effects (the addition of water increases the availability of H+ , which is a reaction partner of CO2 electroreduction) and in an increased rate of transport due to lower viscosity. Electrochemically determined diffusion coefficients for CO2 in [BMIm][BF4 ]/water systems agree well with values determined by NMR spectroscopy.

17.
Chemistry ; 22(36): 12732-40, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27472889

RESUMO

The ancillary ligands 4'-(4-pyridyl)-2,2':6',2''-terpyridine and 4'-(2,3-dihydrobenzo[b]thiophene)-2,2'-6',2"-terpyridine were used to synthesize two series of mono- and dinuclear ruthenium complexes differing in their lengths and anchoring groups. The electrochemical and single-molecular conductance properties of these two series of ruthenium complexes were studied experimentally by means of cyclic voltammetry and the scanning tunneling microscopy-break junction technique (STM-BJ) and theoretically by means of density functional theory (DFT). Cyclic voltammetry data showed clear redox peaks corresponding to both the metal- and ligand-related redox reactions. Single-molecular conductance demonstrated an exponential decay of the molecular conductance with the increase in molecular length for both the series of ruthenium complexes, with decay constants of ßPY =2.07±0.1 nm(-1) and ßBT =2.16±0.1 nm(-1) , respectively. The contact resistance of complexes with 2,3-dihydrobenzo[b]thiophene (BT) anchoring groups is found to be smaller than the contact resistance of ruthenium complexes with pyridine (PY) anchors. DFT calculations support the experimental results and provided additional information on the electronic structure and charge transport properties in those metal|ruthenium complex|metal junctions.

18.
Rapid Commun Mass Spectrom ; 30(8): 1031-6, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27003040

RESUMO

RATIONALE: There is an increasing interest in the quest for low molecular weight biomarkers that can be studied on extra-terrestrial objects by direct laser desorption mass spectrometry (LD-MS). Although molecular structure investigations have recently been carried out by direct LD-MS approaches, there is still a lack of suitable instruments for implementation on a spacecraft due to weight, size and power consumption demands. In this contribution we demonstrate the feasibility of LD-MS structural analysis of molecular species by a miniature laser desorption-ionization mass spectrometer (instrument name LMS) originally designed for in situ elemental and isotope analysis of solids in space research. METHODS: Direct LD-MS studies with molecular resolution were carried out by means of a Laser Ablation/Ionization Mass Spectrometry (LIMS) technique. Two polymer samples served as model systems: neutral polyethylene glycol (PEG) and cationic polymerizates of imidazole and epichlorohydrin (IMEP). Optimal conditions for molecular fragmentation could be identified for both polymers by tuning the laser energy and the instrument-sample distance. RESULTS: PEG and IMEP polymers show sufficient stability over a relatively wide laser energy range. Under mild LD conditions only moderate fragmentation of the polymers takes place so that valuable structural characterization based on fragment ions can be achieved. As the applied laser pulse energy rises, the abundance of fragment ions increases, reaches a plateau and subsequently drops down due to more severe fragmentation and atomization of the polymers. At this final stage, usually referred to as laser ablation, only elemental/isotope analysis can be achieved. CONCLUSIONS: Our investigations demonstrate the versatility of the LMS instrument that can be tuned to favourable laser desorption conditions that successfully meet molecule-specific requirements and deliver abundant fragment ion signals with detailed structural information. Overall, the results show promise for use in similar studies on planetary surfaces beyond Earth where no or minimal sample preparation is essential.


Assuntos
Simulação por Computador , Meio Ambiente Extraterreno/química , Espectrometria de Massas/métodos , Biomarcadores/análise , Biomarcadores/química , Modelos Químicos , Polímeros/análise , Polímeros/química , Voo Espacial
19.
Chimia (Aarau) ; 70(4): 268-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27131112

RESUMO

Direct quantitative and sensitive chemical analysis of solid materials with high spatial resolution, both in lateral and vertical direction is of high importance in various fields of analytical research, ranging from in situ space research to the semiconductor industry. Accurate knowledge of the chemical composition of solid materials allows a better understanding of physical and chemical processes that formed/altered the material and allows e.g. to further improve these processes. So far, state-of-the-art techniques such as SIMS, LA-ICP-MS or GD-MS have been applied for chemical analyses in these fields of research. In this report we review the current measurement capability and the applicability of our Laser Ablation/Ionisation Mass Spectrometer (instrument name LMS) for the chemical analysis of solids with high spatial resolution. The most recent chemical analyses conducted on various solid materials, including e.g. alloys, fossils and meteorites are discussed.

20.
J Am Chem Soc ; 137(6): 2318-27, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25651069

RESUMO

Single molecule charge transport characteristics of buckminsterfullerene-capped symmetric fluorene-based dumbbell-type compound 1 were investigated by scanning tunneling microscopy break junction (STM-BJ), current sensing atomic force microscopy break junction (CS-AFM-BJ), and mechanically controlled break junction (MCBJ) techniques, under ambient conditions. We also show that compound 1 is able to form highly organized defect-free surface adlayers, allowing the molecules on the surface to be addressed specifically. Two distinct single molecule conductance states (called high G(H)(1) and low G(L)(1)) were observed, depending on the pressure exerted by the probe on the junction, thus allowing molecule 1 to function as a mechanically driven molecular switch. These two distinct conductance states were attributed to the electron tunneling through the buckminsterfullerene anchoring group and fully extended molecule 1, respectively. The assignment of conductance features to these configurations was further confirmed by control experiments with asymmetrically designed buckminsterfullerene derivative 2 as well as pristine buckminsterfullerene 3, both lacking the G(L) feature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA