Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 287(46): 38812-23, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23012364

RESUMO

Microarray analysis of Bradyrhizobium japonicum grown under copper limitation uncovered five genes named pcuABCDE, which are co-transcribed and co-regulated as an operon. The predicted gene products are periplasmic proteins (PcuA, PcuC, and PcuD), a TonB-dependent outer membrane receptor (PcuB), and a cytoplasmic membrane-integral protein (PcuE). Homologs of PcuC and PcuE had been discovered in other bacteria, namely PCu(A)C and YcnJ, where they play a role in cytochrome oxidase biogenesis and copper transport, respectively. Deletion of the pcuABCDE operon led to a pleiotropic phenotype, including defects in the aa(3)-type cytochrome oxidase, symbiotic nitrogen fixation, and anoxic nitrate respiration. Complementation analyses revealed that, under our assay conditions, the tested functions depended only on the pcuC gene and not on pcuA, pcuB, pcuD, or pcuE. The B. japonicum genome harbors a second pcuC-like gene (blr7088), which, however, did not functionally replace the mutated pcuC. The PcuC protein was overexpressed in Escherichia coli, purified to homogeneity, and shown to bind Cu(I) with high affinity in a 1:1 stoichiometry. The replacement of His(79), Met(90), His(113), and Met(115) by alanine perturbed copper binding. This corroborates the previously purported role of this protein as a periplasmic copper chaperone for the formation of the Cu(A) center on the aa(3)-type cytochrome oxidase. In addition, we provide evidence that PcuC and the copper chaperone ScoI are important for the symbiotically essential, Cu(A)-free cbb(3)-type cytochrome oxidase specifically in endosymbiotic bacteroids of soybean root nodules, which could explain the symbiosis-defective phenotype of the pcuC and scoI mutants.


Assuntos
Bradyrhizobium/enzimologia , Proteínas de Transporte/metabolismo , Cobre/química , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Nitrogênio/química , Fixação de Nitrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Periplasma/metabolismo , Fenótipo , Homologia de Sequência de Aminoácidos
2.
Anal Bioanal Chem ; 399(6): 2201-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21104234

RESUMO

To achieve separation of isobaric interferences and minimization of matrix related interferences for laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) electrothermal heating of laser generated aerosols was investigated by analyzing a range of solid samples: NIST SRM 610, MBH B26, BAM M381, BAM M601 and Tantalum. ICPMS measurements showed that individual elements can be removed from the laser-generated aerosol at characteristic temperatures for different solid materials. Signal reduction as high as 3 orders of magnitude were achieved for volatile elements, such as Ag and Cd when heating laser-generated aerosol of NIST SRM 610 silicate glass. A signal reduction of more than 99% was obtained for Rb while Sr remained practically unaffected. A temperature- and matrix-dependent change of particle size distribution after aerosol heating was observed by means of laser light scattering (direct aerosol visualization) and scanning electron microscopy. In the temperature range between 900 and 1,200 °C, element unspecific signal suppression was observed, which could be related to a change of the particle size distributions.

3.
Environ Sci Technol ; 44(22): 8718-23, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20964359

RESUMO

The rapidly increasing production of engineered nanoparticles has raised questions regarding their environmental impact and their mobility to overcome biological important barriers. Nanoparticles were found to cross different mammalian barriers, which is summarized under the term translocation. The present work investigates the uptake and translocation of cerium dioxide nanoparticles into maize plants as one of the major agricultural crops. Nanoparticles were exposed either as aerosol or as suspension. Our study demonstrates that 50 µg of cerium/g of leaves was either adsorbed or incorporated into maize leaves. This amount could not be removed by a washing step and did not depend on closed or open stomata investigated under dark and light exposure conditions. However, no translocation into newly grown leaves was found when cultivating the maize plants after airborne particle exposure. The use of inductively coupled mass spectrometer allowed detection limits of less than 1 ng of cerium/g of leaf. Exposure of plants to well-characterized nanoparticle suspensions in the irrigation water resulted also in no detectable translocation. These findings may indicate that the biological barriers of plants are more resistant against nanoparticle translocation than mammalian barriers.


Assuntos
Poluentes Atmosféricos/metabolismo , Cério/metabolismo , Nanopartículas/química , Zea mays/metabolismo , Adsorção , Aerossóis/metabolismo , Irrigação Agrícola , Microscopia Eletrônica de Varredura , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Estômatos de Plantas/metabolismo , Zea mays/ultraestrutura
4.
Nat Nanotechnol ; 7(8): 520-4, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609690

RESUMO

More than 100 million tonnes of municipal solid waste are incinerated worldwide every year. However, little is known about the fate of nanomaterials during incineration, even though the presence of engineered nanoparticles in waste is expected to grow. Here, we show that cerium oxide nanoparticles introduced into a full-scale waste incineration plant bind loosely to solid residues from the combustion process and can be efficiently removed from flue gas using current filter technology. The nanoparticles were introduced either directly onto the waste before incineration or into the gas stream exiting the furnace of an incinerator that processes 200,000 tonnes of waste per year. Nanoparticles that attached to the surface of the solid residues did not become a fixed part of the residues and did not demonstrate any physical or chemical changes. Our observations show that although it is possible to incinerate waste without releasing nanoparticles into the atmosphere, the residues to which they bind eventually end up in landfills or recovered raw materials, confirming that there is a clear environmental need to develop degradable nanoparticles.


Assuntos
Cério , Nanopartículas/química , Resíduos Sólidos , Poluição do Ar , Cério/química , Cério/isolamento & purificação , Monitoramento Ambiental , Gases , Humanos , Incineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA