Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38940832

RESUMO

Nonpainful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging studies have highlighted the value of whole-brain, systems-level investigation for examining sensory processing. However, whole-brain functional magnetic resonance imaging studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high-resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo functional magnetic resonance imaging acquisition at 3T with multi-echo independent component analysis denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to nonpainful brushing of the right hand, left hand, and right foot (n = 10 per location), and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we differentiated the adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.


Assuntos
Mapeamento Encefálico , Tronco Encefálico , Imageamento por Ressonância Magnética , Humanos , Tronco Encefálico/fisiologia , Tronco Encefálico/diagnóstico por imagem , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Adulto , Mapeamento Encefálico/métodos , Adulto Jovem , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Percepção do Tato/fisiologia , Estimulação Física , Mãos/fisiologia
2.
Hum Brain Mapp ; 45(2): e26600, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339896

RESUMO

Resting functional magnetic resonance imaging (fMRI) studies have identified intrinsic spinal cord activity, which forms organised motor (ventral) and sensory (dorsal) resting-state networks. However, to facilitate the use of spinal fMRI in, for example, clinical studies, it is crucial to first assess the reliability of the method, particularly given the unique anatomical, physiological, and methodological challenges associated with acquiring the data. Here, we characterise functional connectivity relationships in the cervical cord and assess their between-session test-retest reliability in 23 young healthy volunteers. Resting-state networks were estimated in two ways (1) by estimating seed-to-voxel connectivity maps and (2) by calculating seed-to-seed correlations. Seed regions corresponded to the four grey matter horns (ventral/dorsal and left/right) of C5-C8 segmental levels. Test-retest reliability was assessed using the intraclass correlation coefficient. Spatial overlap of clusters derived from seed-to-voxel analysis between sessions was examined using Dice coefficients. Following seed-to-voxel analysis, we observed distinct unilateral dorsal and ventral organisation of cervical spinal resting-state networks that was largely confined in the rostro-caudal extent to each spinal segmental level, with more sparse connections observed between segments. Additionally, strongest correlations were observed between within-segment ipsilateral dorsal-ventral connections, followed by within-segment dorso-dorsal and ventro-ventral connections. Test-retest reliability of these networks was mixed. Reliability was poor when assessed on a voxelwise level, with more promising indications of reliability when examining the average signal within clusters. Reliability of correlation strength between seeds was highly variable, with the highest reliability achieved in ipsilateral dorsal-ventral and dorso-dorsal/ventro-ventral connectivity. However, the spatial overlap of networks between sessions was excellent. We demonstrate that while test-retest reliability of cervical spinal resting-state networks is mixed, their spatial extent is similar across sessions, suggesting that these networks are characterised by a consistent spatial representation over time.


Assuntos
Medula Cervical , Animais , Humanos , Medula Cervical/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Medula Espinal/diagnóstico por imagem , Substância Cinzenta , Encéfalo/patologia
3.
J Intern Med ; 295(1): 51-67, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857352

RESUMO

BACKGROUND: Primary adrenal insufficiency (PAI) mortality and morbidity remain unacceptably high, possibly arising as glucocorticoid replacement does not replicate natural physiology. A pulsatile subcutaneous pump can closely replicate cortisol's circadian and ultradian rhythm. OBJECTIVES: To assess the effect of pump therapy on quality of life, mood, functional neuroimaging, behavioural/cognitive responses, sleep and metabolism. METHODS: A 6-week randomised, crossover, double-blinded and placebo-controlled feasibility study of usual dose hydrocortisone in PAI administered as either pulsed subcutaneous or standard care in Bristol, United Kingdom (ISRCTN67193733). Participants were stratified by adrenal insufficiency type. All participants who received study drugs are included in the analysis. The primary outcome, the facial expression recognition task (FERT), occurred at week 6. RESULTS: Between December 2014 and 2017, 22 participants were recruited - 20 completed both arms, and 21 were analysed. The pump was well-tolerated. No change was seen in the FERT primary outcome; however, there were subjective improvements in fatigue and mood. Additionally, functional magnetic resonance imaging revealed differential neural processing to emotional cues and visual stimulation. Region of interest analysis identified the left amygdala and insula, key glucocorticoid-sensitive regions involved in emotional ambiguity. FERT post hoc analysis confirmed this response. There were four serious adverse events (AE): three intercurrent illnesses requiring hospitalisation (1/3, 33.3% pump) and a planned procedure (1/1, 100% pump). There was a small number of expected AEs: infusion site bruising/itching (3/5, 60% pump), intercurrent illness requiring extra (3/7, 42% pump) and no extra (4/6, 66% pump) steroid. CONCLUSIONS: These findings support the administration of hormone therapy that mimics physiology.


Assuntos
Insuficiência Adrenal , Hidrocortisona , Humanos , Insuficiência Adrenal/tratamento farmacológico , Fadiga , Glucocorticoides/efeitos adversos , Hidrocortisona/efeitos adversos , Qualidade de Vida , Ritmo Ultradiano , Estudos de Viabilidade
4.
Neuroimage ; 275: 120152, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37142169

RESUMO

The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T. When investigating connectivity in the entire cervical spinal cord, we observed fair to good reliability for dorsal-dorsal and ventral-ventral connectivity, whereas reliability was poor for within- and between-hemicord dorsal-ventral connectivity. Considering how prone spinal cord fMRI is to noise, we extensively investigated the impact of distinct noise sources and made two crucial observations: removal of physiological noise led to a reduction in functional connectivity strength and reliability - due to the removal of stable and participant-specific noise patterns - whereas removal of thermal noise considerably increased the detectability of functional connectivity without a clear influence on reliability. Finally, we also assessed connectivity within spinal cord segments and observed that while the pattern of connectivity was similar to that of whole cervical cord, reliability at the level of single segments was consistently poor. Taken together, our results demonstrate the presence of reliable resting-state functional connectivity in the human spinal cord even after thoroughly accounting for physiological and thermal noise, but at the same time urge caution if focal changes in connectivity (e.g. due to segmental lesions) are to be studied, especially in a longitudinal manner.


Assuntos
Medula Cervical , Medula Espinal , Adulto Jovem , Animais , Humanos , Reprodutibilidade dos Testes , Medula Espinal/diagnóstico por imagem , Medula Espinal/fisiologia , Medula Cervical/fisiologia , Encéfalo , Corno Dorsal da Medula Espinal , Imageamento por Ressonância Magnética/métodos
5.
Dev Med Child Neurol ; 65(3): 367-375, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35907252

RESUMO

AIM: To investigate whether brain volumes were reduced in children aged 6 to 8 years without cerebral palsy, who underwent therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy (patients), and matched controls, and to examine the relation between subcortical volumes and functional outcome. METHOD: We measured regional brain volumes in 31 patients and 32 controls (median age 7 years and 7 years 2 months respectively) from T1-weighted magnetic resonance imaging (MRI). We assessed cognition using the Wechsler Intelligence Scales for Children, Fourth Edition and motor ability using the Movement Assessment Battery for Children, Second Edition (MABC-2). RESULTS: Patients had lower volume of whole-brain grey matter, white matter, pallidi, hippocampi, and thalami than controls (false discovery rate-corrected p < 0.05). Differences in subcortical grey-matter volumes were not independent of total brain volume (TBV). In patients, hippocampal and thalamic volumes correlated with full-scale IQ (hippocampi, r = 0.477, p = 0.010; thalami, r = 0.452, p = 0.016) and MABC-2 total score (hippocampi, r = 0.526, p = 0.004; thalami, r = 0.505, p = 0.006) independent of age, sex, and TBV. No significant correlations were found in controls. In patients, cortical injury on neonatal MRI was associated with reduced volumes of hippocampi (p = 0.001), thalami (p = 0.002), grey matter (p = 0.015), and white matter (p = 0.013). INTERPRETATION: Children who underwent therapeutic hypothermia have reduced whole-brain grey and white-matter volumes, with associations between hippocampal and thalamic volumes and functional outcomes.


Assuntos
Paralisia Cerebral , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Recém-Nascido , Humanos , Criança , Paralisia Cerebral/diagnóstico por imagem , Paralisia Cerebral/terapia , Paralisia Cerebral/patologia , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cognição , Imageamento por Ressonância Magnética
6.
Dev Med Child Neurol ; 65(6): 792-802, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36335569

RESUMO

AIM: To evaluate mammillary body abnormalities in school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy (cases) and matched controls, and associations with cognitive outcome, hippocampal volume, and diffusivity in the mammillothalamic tract (MTT) and fornix. METHOD: Mammillary body abnormalities were scored from T1-weighted magnetic resonance imaging (MRI) in 32 cases and 35 controls (median age [interquartile range] 7 years [6 years 7 months-7 years 7 months] and 7 years 4 months [6 years 7 months-7 years 7 months] respectively). Cognition was assessed using the Wechsler Intelligence Scale for Children, Fourth Edition. Hippocampal volume (normalized by total brain volume) was measured from T1-weighted MRI. Radial diffusivity and fractional anisotropy were measured in the MTT and fornix, from diffusion-weighted MRI using deterministic tractography. RESULTS: More cases than controls had mammillary body abnormalities (34% vs 0%; p < 0.001). Cases with abnormal mammillary bodies had lower processing speed (p = 0.016) and full-scale IQ (p = 0.028) than cases without abnormal mammillary bodies, and lower scores than controls in all cognitive domains (p < 0.05). Cases with abnormal mammillary bodies had smaller hippocampi (left p = 0.016; right p = 0.004) and increased radial diffusivity in the right MTT (p = 0.004) compared with cases without mammillary body abnormalities. INTERPRETATION: Cooled children with mammillary body abnormalities at school-age have reduced cognitive scores, smaller hippocampi, and altered MTT microstructure compared with those without mammillary body abnormalities, and matched controls. WHAT THIS PAPER ADDS: Cooled children are at higher risk of mammillary body abnormalities than controls. Abnormal mammillary bodies are associated with reduced cognitive scores and smaller hippocampi. Abnormal mammillary bodies are associated with altered mammillothalamic tract diffusivity.


Assuntos
Encefalopatias , Doenças do Recém-Nascido , Recém-Nascido , Humanos , Criança , Lactente , Corpos Mamilares/diagnóstico por imagem , Corpos Mamilares/patologia , Fórnice/patologia , Imagem de Difusão por Ressonância Magnética , Cognição , Imageamento por Ressonância Magnética
7.
Hum Brain Mapp ; 43(18): 5389-5407, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938527

RESUMO

Functional magnetic resonance imaging (fMRI) of the human spinal cord faces many challenges, such as signal loss due to local magnetic field inhomogeneities. This issue can be addressed with slice-specific z-shimming, which compensates for the dephasing effect of the inhomogeneities using a slice-specific gradient pulse. Here, we aim to address outstanding issues regarding this technique by evaluating its effects on several aspects that are directly relevant for spinal fMRI and by developing two automated procedures in order to improve upon the time-consuming and subjective nature of manual selection of z-shims: one procedure finds the z-shim that maximizes signal intensity in each slice of an EPI reference-scan and the other finds the through-slice field inhomogeneity for each EPI-slice in field map data and calculates the required compensation gradient moment. We demonstrate that the beneficial effects of z-shimming are apparent across different echo times, hold true for both the dorsal and ventral horn, and are also apparent in the temporal signal-to-noise ratio (tSNR) of EPI time-series data. Both of our automated approaches were faster than the manual approach, lead to significant improvements in gray matter tSNR compared to no z-shimming and resulted in beneficial effects that were stable across time. While the field-map-based approach performed slightly worse than the manual approach, the EPI-based approach performed as well as the manual one and was furthermore validated on an external corticospinal data-set (N > 100). Together, automated z-shimming may improve the data quality of future spinal fMRI studies and lead to increased reproducibility in longitudinal studies.


Assuntos
Artefatos , Imagem Ecoplanar , Humanos , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
8.
Neuroimage ; 226: 117548, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186712

RESUMO

Pain demands attention, yet pain can be reduced by focusing attention elsewhere. The neural processes involved in this robust psychophysical phenomenon, attentional analgesia, are still being defined. Our previous fMRI study linked activity in the brainstem triad of locus coeruleus (LC), rostral ventromedial medulla (RVM) and periaqueductal grey (PAG) with attentional analgesia. Here we identify and model the functional interactions between these regions and the cortex in healthy human subjects (n = 57), who received painful thermal stimuli whilst simultaneously performing a visual attention task. RVM activity encoded pain intensity while contralateral LC activity correlated with attentional analgesia. Psycho-Physiological Interaction analysis and Dynamic Causal Modelling identified two parallel paths between forebrain and brainstem. These connections are modulated by attentional demand: a bidirectional anterior cingulate cortex (ACC) - right-LC loop, and a top-down influence of task on ACC-PAG-RVM. By recruiting discrete brainstem circuits, the ACC is able to modulate nociceptive input to reduce pain in situations of conflicting attentional demand.


Assuntos
Analgesia/psicologia , Atenção/fisiologia , Tronco Encefálico/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Percepção da Dor/fisiologia , Dor/diagnóstico por imagem , Adolescente , Adulto , Tronco Encefálico/fisiopatologia , Córtex Cerebral/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Dor/fisiopatologia , Dor/psicologia , Manejo da Dor , Adulto Jovem
9.
Neuroimage ; 193: 46-56, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30872047

RESUMO

Upon receiving a correction, initially presented misinformation often continues to influence people's judgment and reasoning. Whereas some researchers believe that this so-called continued influence effect of misinformation (CIEM) simply arises from the insufficient encoding and integration of corrective claims, others assume that it arises from a competition between the correct information and the initial misinformation in memory. To examine these possibilities, we conducted two functional magnetic resonance imaging (fMRI) studies. In each study, participants were asked to (a) read a series of brief news reports that contained confirmations or corrections of prior information and (b) evaluate whether subsequently presented memory probes matched the reports' correct facts rather than the initial misinformation. Both studies revealed that following correction-containing news reports, participants struggled to refute mismatching memory probes, especially when they referred to initial misinformation (as opposed to mismatching probes with novel information). We found little evidence, however, that the encoding of confirmations and corrections produced systematic neural processing differences indicative of distinct encoding strategies. Instead, we discovered that following corrections, participants exhibited increased activity in the left angular gyrus and the bilateral precuneus in response to mismatching memory probes that contained prior misinformation, compared to novel mismatch probes. These findings favour the notion that people's susceptibility to the CIEM arises from the concurrent retention of both correct and incorrect information in memory.


Assuntos
Encéfalo/fisiologia , Comunicação , Memória/fisiologia , Adolescente , Adulto , Feminino , Humanos , Julgamento/fisiologia , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
10.
Hum Brain Mapp ; 40(16): 4732-4747, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31361075

RESUMO

The cerebellum is involved in a wide range of behaviours. A key organisational principle from animal studies is that somatotopically corresponding sensory input and motor output reside in the same cerebellar cortical areas. However, compelling evidence for a similar arrangement in humans and whether it extends to cognitive functions is lacking. To address this, we applied cerebellar optimised whole-brain functional MRI in 20 healthy subjects. To assess spatial overlap within the sensorimotor and cognitive domains, we recorded activity to a sensory stimulus (vibrotactile) and a motor task; the Sternberg verbal working memory (VWM) task; and a verb generation paradigm. Consistent with animal data, sensory and motor activity overlapped with a somatotopic arrangement in ipsilateral areas of the anterior and posterior cerebellum. During the maintenance phase of the Sternberg task, a positive linear relationship between VWM load and activity was observed in right Lobule VI, extending into Crus I bilaterally. Articulatory movement gave rise to bilateral activity in medial Lobule VI. A conjunction of two independent language tasks localised activity during verb generation in right Lobule VI-Crus I, which overlapped with activity during VWM. These results demonstrate spatial compartmentalisation of sensorimotor and cognitive function in the human cerebellum, with each area involved in more than one aspect of a given behaviour, consistent with an integrative function. Sensorimotor localisation was uniform across individuals, but the representation of cognitive tasks was more variable, highlighting the importance of individual scans for mapping higher order functions within the cerebellum.


Assuntos
Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Idioma , Memória de Curto Prazo/fisiologia , Sensação/fisiologia , Adulto , Mapeamento Encefálico , Cognição/fisiologia , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Estimulação Física , Desempenho Psicomotor/fisiologia , Vibração , Adulto Jovem
11.
J Neurosci ; 37(9): 2279-2291, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096471

RESUMO

Previous human imaging studies manipulating attention or expectancy have identified the periaqueductal gray (PAG) as a key brainstem structure implicated in endogenous analgesia. However, animal studies indicate that PAG analgesia is mediated largely via caudal brainstem structures, such as the rostral ventromedial medulla (RVM) and locus coeruleus (LC). To identify their involvement in endogenous analgesia, we used brainstem optimized, whole-brain imaging to record responses to concurrent thermal stimulation (left forearm) and visual attention tasks of titrated difficulty in 20 healthy subjects. The PAG, LC, and RVM were anatomically discriminated using a probabilistic atlas. Pain ratings disclosed the anticipated analgesic interaction between task difficulty and pain intensity (p < 0.001). Main effects of noxious thermal stimulation were observed across several brain regions, including operculoinsular, primary somatosensory, and cingulate cortices, whereas hard task difficulty was represented in anterior insular, parietal, and prefrontal cortices. Permutation testing within the brainstem nuclei revealed the following: main effects of task in dorsal PAG and right LC; and main effect of temperature in RVM and a task × temperature interaction in right LC. Intrasubject regression revealed a distributed network of supratentorial brain regions and the RVM whose activity was linearly related to pain intensity. Intersubject analgesia scores correlated to activity within a distinct region of the RVM alone. These results identify distinct roles for a brainstem triumvirate in attentional analgesia: with the PAG activated by attentional load; specific RVM regions showing pronociceptive and antinociceptive processes (in line with previous animal studies); and the LC showing lateralized activity during conflicting attentional demands.SIGNIFICANCE STATEMENT Attention modulates pain intensity, and human studies have identified roles for a network of forebrain structures plus the periaqueductal gray (PAG). Animal data indicate that the PAG acts via caudal brainstem structures to control nociception. We investigated this issue within an attentional analgesia paradigm with brainstem-optimized fMRI and analysis using a probabilistic brainstem atlas. We find pain intensity encoding in several forebrain structures, including the insula and attentional activation of the PAG. Discrete regions of the rostral ventromedial medulla bidirectionally influence pain perception, and locus coeruleus activity mirrors the interaction between attention and nociception. This approach has enabled the resolution of contributions from a hub of key brainstem structures to endogenous analgesia.


Assuntos
Analgesia , Atenção/fisiologia , Tronco Encefálico/fisiologia , Locus Cerúleo/fisiologia , Bulbo/fisiologia , Adolescente , Adulto , Análise de Variância , Temperatura Corporal/fisiologia , Mapeamento Encefálico , Tronco Encefálico/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Locus Cerúleo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Bulbo/diagnóstico por imagem , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Medição da Dor , Estimulação Luminosa , Adulto Jovem
12.
Neuroimage ; 154: 255-266, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693613

RESUMO

Functional magnetic resonance imaging (fMRI) of the human spinal cord is a difficult endeavour due to the cord's small cross-sectional diameter, signal drop-out as well as image distortion due to magnetic field inhomogeneity, and the confounding influence of physiological noise from cardiac and respiratory sources. Nevertheless, there is great interest in spinal fMRI due to the spinal cord's role as the principal sensorimotor interface between the brain and the body and its involvement in a variety of sensory and motor pathologies. In this review, we give an overview of the various methods that have been used to address the technical challenges in spinal fMRI, with a focus on reducing the impact of physiological noise. We start out by describing acquisition methods that have been tailored to the special needs of spinal fMRI and aim to increase the signal-to-noise ratio and reduce distortion in obtained images. Following this, we concentrate on image processing and analysis approaches that address the detrimental effects of noise. While these include variations of standard pre-processing methods such as motion correction and spatial filtering, the main focus lies on denoising techniques that can be applied to task-based as well as resting-state data sets. We review both model-based approaches that rely on externally acquired respiratory and cardiac signals as well as data-driven approaches that estimate and correct for noise using the data themselves. We conclude with an outlook on techniques that have been successfully applied for noise reduction in brain imaging and whose use might be beneficial for fMRI of the human spinal cord.


Assuntos
Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Medula Espinal/fisiologia , Humanos , Medula Espinal/diagnóstico por imagem
13.
Neuroimage ; 147: 589-601, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28027960

RESUMO

The study of spontaneous fluctuations in the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord. Two ultra-high field functional magnetic resonance imaging (fMRI) studies in humans have provided evidence for reproducible resting-state connectivity between the dorsal horns as well as between the ventral horns, and a study in non-human primates has shown that these resting-state signals are impacted by spinal cord injury. As these studies were carried out at ultra-high field strengths using region-of-interest (ROI) based analyses, we investigated whether such resting-state signals could also be observed at the clinically more prevalent field strength of 3T. In a reanalysis of a sample of 20 healthy human participants who underwent a resting-state fMRI acquisition of the cervical spinal cord, we were able to observe significant dorsal horn connectivity as well as ventral horn connectivity, but no consistent effects for connectivity between dorsal and ventral horns, thus replicating the human 7T results. These effects were not only observable when averaging along the acquired length of the spinal cord, but also when we examined each of the acquired spinal segments separately, which showed similar patterns of connectivity. Finally, we investigated the robustness of these resting-state signals against variations in the analysis pipeline by varying the type of ROI creation, temporal filtering, nuisance regression and connectivity metric. We observed that - apart from the effects of band-pass filtering - ventral horn connectivity showed excellent robustness, whereas dorsal horn connectivity showed moderate robustness. Together, our results provide evidence that spinal cord resting-state connectivity is a robust and spatially consistent phenomenon that could be a valuable tool for investigating the effects of pathology, disease progression, and treatment response in neurological conditions with a spinal component, such as spinal cord injury.


Assuntos
Medula Cervical/fisiologia , Conectoma/métodos , Corno Dorsal da Medula Espinal/fisiologia , Corno Ventral da Medula Espinal/fisiologia , Adulto , Medula Cervical/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Corno Dorsal da Medula Espinal/diagnóstico por imagem , Corno Ventral da Medula Espinal/diagnóstico por imagem , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 111(50): 18067-72, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25472845

RESUMO

Spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals of the brain have repeatedly been observed when no task or external stimulation is present. These fluctuations likely reflect baseline neuronal activity of the brain and correspond to functionally relevant resting-state networks (RSN). It is not known however, whether intrinsically organized and spatially circumscribed RSNs also exist in the spinal cord, the brain's principal sensorimotor interface with the body. Here, we use recent advances in spinal fMRI methodology and independent component analysis to answer this question in healthy human volunteers. We identified spatially distinct RSNs in the human spinal cord that were clearly separated into dorsal and ventral components, mirroring the functional neuroanatomy of the spinal cord and likely reflecting sensory and motor processing. Interestingly, dorsal (sensory) RSNs were separated into right and left components, presumably related to ongoing hemibody processing of somatosensory information, whereas ventral (motor) RSNs were bilateral, possibly related to commissural interneuronal networks involved in central pattern generation. Importantly, all of these RSNs showed a restricted spatial extent along the spinal cord and likely conform to the spinal cord's functionally relevant segmental organization. Although the spatial and temporal properties of the dorsal and ventral RSNs were found to be significantly different, these networks showed significant interactions with each other at the segmental level. Together, our data demonstrate that intrinsically highly organized resting-state fluctuations exist in the human spinal cord and are thus a hallmark of the entire central nervous system.


Assuntos
Rede Nervosa/fisiologia , Descanso/fisiologia , Medula Espinal/fisiologia , Adulto , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia , Análise de Regressão , Medula Espinal/citologia
15.
Neuroimage ; 84: 394-405, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24018307

RESUMO

Physiological noise, if unaccounted for, can drastically reduce the statistical significance of detected activation in FMRI. In this paper, we systematically optimize physiological noise regressions for multi-shot 3D FMRI data. First, we investigate whether 3D FMRI data are best corrected in image space (RetroICor) or k-space (RetroKCor), in which each k-space segment can be assigned its unique physiological phase. In addition, the optimal regressor set is determined using the Bayesian Information Criterion (BIC) for a variety of 3D acquisitions corresponding to different image contrasts and k-space readouts. Our simulations and experiments indicate that: (a) k-space corrections are more robust when performed on real/imaginary than magnitude/phase data; (b) k-space corrections do not outperform image-space corrections, despite the ability to synchronize physiological phase to acquisition time more accurately; and (c) the optimal model varied considerably between the various acquisition techniques. These results suggest the use of a tailored set of volume-wide regressors, determined by BIC or other selection criteria, that achieves optimal balance between variance reduction and potential over-fitting.


Assuntos
Algoritmos , Artefatos , Encéfalo/fisiologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
16.
Brain Commun ; 6(3): fcae154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741661

RESUMO

Therapeutic hypothermia improves outcomes following neonatal hypoxic-ischaemic encephalopathy, reducing cases of death and severe disability such as cerebral palsy compared with normothermia management. However, when cooled children reach early school-age, they have cognitive and motor impairments which are associated with underlying alterations to brain structure and white matter connectivity. It is unknown whether these differences in structural connectivity are associated with differences in functional connectivity between cooled children and healthy controls. Resting-state functional MRI has been used to characterize static and dynamic functional connectivity in children, both with typical development and those with neurodevelopmental disorders. Previous studies of resting-state brain networks in children with hypoxic-ischaemic encephalopathy have focussed on the neonatal period. In this study, we used resting-state fMRI to investigate static and dynamic functional connectivity in children aged 6-8 years who were cooled for neonatal hypoxic-ischaemic without cerebral palsy [n = 22, median age (interquartile range) 7.08 (6.85-7.52) years] and healthy controls matched for age, sex and socioeconomic status [n = 20, median age (interquartile range) 6.75 (6.48-7.25) years]. Using group independent component analysis, we identified 31 intrinsic functional connectivity networks consistent with those previously reported in children and adults. We found no case-control differences in the spatial maps of these intrinsic connectivity networks. We constructed subject-specific static functional connectivity networks by measuring pairwise Pearson correlations between component time courses and found no case-control differences in functional connectivity after false discovery rate correction. To study the time-varying organization of resting-state networks, we used sliding window correlations and deep clustering to investigate dynamic functional connectivity characteristics. We found k = 4 repetitively occurring functional connectivity states, which exhibited no case-control differences in dwell time, fractional occupancy or state functional connectivity matrices. In this small cohort, the spatiotemporal characteristics of resting-state brain networks in cooled children without severe disability were too subtle to be differentiated from healthy controls at early school-age, despite underlying differences in brain structure and white matter connectivity, possibly reflecting a level of recovery of healthy resting-state brain function. To our knowledge, this is the first study to investigate resting-state functional connectivity in children with hypoxic-ischaemic encephalopathy beyond the neonatal period and the first to investigate dynamic functional connectivity in any children with hypoxic-ischaemic encephalopathy.

17.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659741

RESUMO

Non-painful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging (fMRI) studies have highlighted the value of whole-brain, systems-level investigation for examining pain processing. However, whole-brain fMRI studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, the differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo fMRI acquisition at 3T with multi-echo independent component analysis (ME-ICA) denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to non-painful brushing of the right hand, left hand, and right foot, and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we were able to differentiate the small, adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.

18.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38187724

RESUMO

The application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across two consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat pain stimuli (1s duration) using the intraclass correlation coefficient (ICC). At the group level, we observed robust autonomic responses as well as spatially specific spinal cord BOLD responses at the expected location, but no spatial overlap in BOLD response patterns across days. While autonomic indicators of pain processing showed good-to-excellent reliability, both ß -estimates and z-scores of task-related BOLD responses showed poor reliability across days in the target region (gray matter of the ipsilateral dorsal horn). When taking into account the sensitivity of gradient-echo echo planar imaging (GE-EPI) to draining vein signals by including the venous plexus in the analysis, we observed BOLD responses with fair reliability across days. Taken together, these results demonstrate that heat pain stimuli as short as one second are able to evoke a robust and spatially specific BOLD response, which is however strongly variable within participants across time, resulting in low reliability in the dorsal horn gray matter. Further improvements in data acquisition and analysis techniques are thus necessary before event-related spinal cord fMRI as used here can be reliably employed in longitudinal designs or clinical settings.

19.
J Neurosci ; 32(18): 6231-9, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22553029

RESUMO

Chronic pain is thought to arise because of maladaptive changes occurring within the peripheral nervous system and CNS. The transition from acute to chronic pain is known to involve the spinal cord (Woolf and Salter, 2000). Therefore, to investigate altered human spinal cord function and translate results obtained from other species, a noninvasive neuroimaging technique is desirable. We have investigated the functional response in the cervical spinal cord of 18 healthy human subjects (aged 22-40 years) to noxious thermal and non-noxious tactile stimulation of the left and right forearms. Physiological noise, which is a significant source of signal variability in the spinal cord, was accounted for in the general linear model. Group analysis, performed using a mixed-effects model, revealed distinct regions of activity that were dependent on both the side and the type of stimulation. In particular, thermal stimulation on the medial aspect of the wrist produced activity within the C6/C5 segment ipsilateral to the side of stimulation. Similar to data recorded in animals (Fitzgerald, 1982), painful thermal stimuli produced increased ipsilateral and decreased contralateral blood flow, which may reflect, respectively, excitatory and inhibitory processes. Nonpainful punctate stimulation of the thenar eminence provoked more diffuse activity but was still ipsilateral to the side of stimulation. These results present the first noninvasive evidence for a lateralized response to noxious and non-noxious stimuli in the human spinal cord. The development of these techniques opens the path to understanding, at a subject-specific level, central sensitization processes that contribute to chronic pain states.


Assuntos
Neurônios , Dor/fisiopatologia , Estimulação Física/métodos , Medula Espinal/fisiopatologia , Sensação Térmica , Tato , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
20.
Ann Clin Transl Neurol ; 10(1): 32-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480557

RESUMO

OBJECTIVE: Neonatal imaging studies report corpus callosum abnormalities after neonatal hypoxic-ischaemic encephalopathy (HIE), but corpus callosum development and relation to cognition in childhood are unknown. Using magnetic resonance imaging (MRI), we examined the relationship between corpus callosum size, microstructure and cognitive and motor outcomes at early school-age children cooled for HIE (cases) without cerebral palsy compared to healthy, matched controls. A secondary aim was to examine the impact of HIE-related neonatal brain injury on corpus callosum size, microstructure and growth. METHODS: Participants aged 6-8 years underwent MRI, the Movement Assessment Battery for Children Second Edition and Wechsler Intelligence Scale for Children Fourth Edition. Cross-sectional area, volume, fractional anisotropy and radial diffusivity of the corpus callosum and five subdivisions were measured. Multivariable regression was used to assess associations between total motor score, full-scale IQ (FSIQ) and imaging metrics. RESULTS: Adjusting for age, sex and intracranial volume, cases (N = 40) compared to controls (N = 39) demonstrated reduced whole corpus callosum area (ß = -26.9, 95% confidence interval [CI] = -53.17, -0.58), volume (ß = -138.5, 95% CI = -267.54, -9.56), fractional anisotropy and increased radial diffusivity (P < 0.05) within segments II-V. In cases, segment V area (ß = 0.18, 95% CI = 0.004, 0.35), volume (ß = 0.04, 95% CI = 0.001, 0.079), whole corpus callosum fractional anisotropy (ß = 13.8 95% CI = 0.6, 27.1) and radial diffusivity (ß = -11.3, 95% CI = -22.22, -0.42) were associated with FSIQ. Growth of the corpus callosum was restricted in cases with a FSIQ ≤85, and volume was reduced in cases with mild neonatal multifocal injury compared to white matter injury alone. INTERPRETATION: Following neonatal HIE, morphological and microstructural changes in the corpus callosum are associated with reduced cognitive function at early school age.


Assuntos
Lesões Encefálicas , Cognição , Corpo Caloso , Criança , Humanos , Recém-Nascido , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Cognição/fisiologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Estudos de Casos e Controles
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA