Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Dermatol ; 33(7): e15141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036889

RESUMO

Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI-MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.


Assuntos
Carcinoma Basocelular , Aprendizado de Máquina , Metabolômica , Neoplasias Cutâneas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Animais , Camundongos , Metabolômica/métodos , Sensibilidade e Especificidade , Algoritmos , Biomarcadores Tumorais/metabolismo , Humanos
2.
Sci Rep ; 14(1): 11091, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750270

RESUMO

Cutaneous squamous cell carcinoma (SCC) is an increasingly prevalent global health concern. Current diagnostic and surgical methods are reliable, but they require considerable resources and do not provide metabolomic insight. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) enables detailed, spatially resolved metabolomic analysis of tissue samples. Integrated with machine learning, MALDI-MSI could yield detailed information pertaining to the metabolic alterations characteristic for SCC. These insights have the potential to enhance SCC diagnosis and therapy, improving patient outcomes while tackling the growing disease burden. This study employs MALDI-MSI data, labelled according to histology, to train a supervised machine learning model (logistic regression) for the recognition and delineation of SCC. The model, based on data acquired from discrete tumor sections (n = 25) from a mouse model of SCC, achieved a predictive accuracy of 92.3% during cross-validation on the labelled data. A pathologist unacquainted with the dataset and tasked with evaluating the predictive power of the model in the unlabelled regions, agreed with the model prediction for over 99% of the tissue areas. These findings highlight the potential value of integrating MALDI-MSI with machine learning to characterize and delineate SCC, suggesting a promising direction for the advancement of mass spectrometry techniques in the clinical diagnosis of SCC and related keratinocyte carcinomas.


Assuntos
Carcinoma de Células Escamosas , Aprendizado de Máquina , Neoplasias Cutâneas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico , Animais , Camundongos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA