Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2304650120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988470

RESUMO

Atmospheric formic acid is severely underpredicted by models. A recent study proposed that this discrepancy can be resolved by abundant formic acid production from the reaction (1) between hydroxyl radical and methanediol derived from in-cloud formaldehyde processing and provided a chamber-experiment-derived rate constant, k1 = 7.5 × 10-12 cm3 s-1. High-level accuracy coupled cluster calculations in combination with E,J-resolved two-dimensional master equation analyses yield k1 = (2.4 ± 0.5) × 10-12 cm3 s-1 for relevant atmospheric conditions (T = 260-310 K and P = 0-1 atm). We attribute this significant discrepancy to HCOOH formation from other molecules in the chamber experiments. More importantly, we show that reversible aqueous processes result indirectly in the equilibration on a 10 min. time scale of the gas-phase reaction [Formula: see text] (2) with a HOCH2OH to HCHO ratio of only ca. 2%. Although HOCH2OH outgassing upon cloud evaporation typically increases this ratio by a factor of 1.5-5, as determined by numerical simulations, its in-cloud reprocessing is shown using a global model to strongly limit the gas-phase sink and the resulting production of formic acid. Based on the combined findings in this work, we derive a range of 1.2-8.5 Tg/y for the global HCOOH production from cloud-derived HOCH2OH reacting with OH. The best estimate, 3.3 Tg/y, is about 30 times less than recently reported. The theoretical equilibrium constant Keq (2) determined in this work also allows us to estimate the Henry's law constant of methanediol (8.1 × 105 M atm-1 at 280 K).

2.
Phys Chem Chem Phys ; 26(24): 17265-17273, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856369

RESUMO

A new strategy is presented for computing anharmonic partition functions for the motion of adsorbates relative to a catalytic surface. Importance sampling is compared with conventional Monte Carlo. The importance sampling is significantly more efficient. This new approach is applied to CH3* on Ni(111) as a test case. The motion of methyl relative to the nickel surface is found to be anharmonic, with significantly higher entropy compared to the standard harmonic oscillator model. The new method is freely available as part of the Minima-Preserving Neural Network within the ADTHERM package.

3.
J Chem Inf Model ; 63(16): 5153-5168, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37559203

RESUMO

Many important industrial processes rely on heterogeneous catalytic systems. However, given all possible catalysts and conditions of interest, it is impractical to optimize most systems experimentally. Automatically generated microkinetic models can be used to efficiently consider many catalysts and conditions. However, these microkinetic models require accurate estimation of many thermochemical and kinetic parameters. Manually calculating these parameters is tedious and error prone, involving many interconnected computations. We present Pynta, a workflow software for automating the calculation of surface and gas-surface reactions. Pynta takes the reactants, products, and atom maps for the reactions of interest, generates sets of initial guesses for all species and saddle points, runs all optimizations, frequency, and IRC calculations, and computes the associated thermochemistry and rate coefficients. It is able to consider all unique adsorption configurations for both adsorbates and saddle points, allowing it to handle high index surfaces and bidentate species. Pynta implements a new saddle point guess generation method called harmonically forced saddle point searching (HFSP). HFSP defines harmonic potentials based on the optimized adsorbate geometries and which bonds are breaking and forming that allow initial placements to be optimized using the GFN1-xTB semiempirical method to create reliable saddle point guesses. This method is reaction class agnostic and fast, allowing Pynta to consider all possible adsorbate site placements efficiently. We demonstrate Pynta on 11 diverse reactions involving monodenate, bidentate, and gas-phase species, many distinct reaction classes, and both a low and a high index facet of Cu. Our results suggest that it is very important to consider reactions between adsorbates adsorbed in all unique configurations for interadsorbate group transfers and reactions on high index surfaces.


Assuntos
Física , Cinética , Fluxo de Trabalho
4.
Phys Chem Chem Phys ; 25(32): 21162-21172, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36200428

RESUMO

The bond dissociation energy of methylidyne, D0(CH), is studied using an improved version of the High-Accuracy Extrapolated ab initio Thermochemistry (HEAT) approach as well as the Feller-Peterson-Dixon (FPD) model chemistry. These calculations, which include basis sets up to nonuple (aug-cc-pCV9Z) quality, are expected to be capable of providing results substantially more accurate than the ca. 1 kJ mol-1 level that is characteristic of standard high-accuracy protocols for computational thermochemistry. The calculated 0 K CH bond energy (27 954 ± 15 cm-1 for HEAT and 27 956 ± 15 cm-1 for FPD), along with equivalent treatments of the CH ionization energy and the CH+ dissociation energy (85 829 ± 15 cm-1 and 32 946 ± 15 cm-1, respectively), were compared to the existing benchmarks from Active Thermochemical Tables (ATcT), uncovering an unexpected difference for D0(CH). This has prompted a detailed reexamination of the provenance of the corresponding ATcT benchmark, allowing the discovery and subsequent correction of a systematic error present in several published high-level calculations, ultimately yielding an amended ATcT benchmark for D0(CH). Finally, the current theoretical results were added to the ATcT Thermochemical Network, producing refined ATcT estimates of 27 957.3 ± 6.0 cm-1 for D0(CH), 32 946.7 ± 0.6 cm-1 for D0(CH+), and 85 831.0 ± 6.0 cm-1 for IE(CH).

5.
J Phys Chem A ; 127(3): 704-723, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36635235

RESUMO

The thermochemistry of halocarbon species containing iodine and bromine is examined through an extensive interplay between new Feller-Peterson-Dixon (FPD) style composite methods and a detailed analysis of all available experimental and theoretical determinations using the thermochemical network that underlies the Active Thermochemical Tables (ATcT). From the computational viewpoint, a slower convergence of the components of composite thermochemistry methods is observed relative to species that solely contain first row elements, leading to a higher computational expense for achieving comparable levels of accuracy. Potential systematic sources of computational uncertainty are investigated, and, not surprisingly, spin-orbit coupling is found to be a critical component, particularly for iodine containing molecular species. The ATcT analysis of available experimental and theoretical determinations indicates that prior theoretical determinations have significantly larger uncertainties than originally reported, particularly in cases where molecular spin-orbit effects were ignored. Accurate and reliable heats of formation are reported for 38 halogen containing systems, based on combining the current computations with previous experimental and theoretical work via the ATcT approach.

6.
Faraday Discuss ; 238(0): 405-430, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35786720

RESUMO

High-level coupled cluster theory, in conjunction with Active Thermochemical Tables (ATcT) and E,J-resolved master equation calculations, was used in a study of the title reactions, which play an important role in the combustion of hydrocarbons. In the set of radical/radical reactions leading to soot formation in flames, the addition of H-atoms to alkenes is likely a common reaction, triggering the isomerization of complex hydrocarbons to aromatics. The heats of formation of C2H3, C2H4, and C2H5 are established to be 301.26 ± 0.30 at 0 K (297.22 ± 0.30 at 298 K), 60.89 ± 0.11 (52.38 ± 0.11), and 131.38 ± 0.22 (120.63 ± 0.22) kJ mol-1, respectively. The calculated rate constants from first principles agree well with experiments where they are available. Under conditions typical of high temperature combustion - where experimental work is very challenging with a consequent dearth of accurate data - we provide high-level theoretical results for kinetic modeling.

7.
J Am Chem Soc ; 143(8): 3124-3142, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615780

RESUMO

The development of high-fidelity mechanisms for chemically reactive systems is a challenging process that requires the compilation of rate descriptions for a large and somewhat ill-defined set of reactions. The present unified combination of modeling, experiment, and theory provides a paradigm for improving such mechanism development efforts. Here we combine broadband rotational spectroscopy with detailed chemical modeling based on rate constants obtained from automated ab initio transition state theory-based master equation calculations and high-level thermochemical parametrizations. Broadband rotational spectroscopy offers quantitative and isomer-specific detection by which branching ratios of polar reaction products may be obtained. Using this technique, we observe and characterize products arising from H atom substitution reactions in the flash pyrolysis of acetone (CH3C(O)CH3) at a nominal temperature of 1800 K. The major product observed is ketene (CH2CO). Minor products identified include acetaldehyde (CH3CHO), propyne (CH3CCH), propene (CH2CHCH3), and water (HDO). Literature mechanisms for the pyrolysis of acetone do not adequately describe the minor products. The inclusion of a variety of substitution reactions, with rate constants and thermochemistry obtained from automated ab initio kinetics predictions and Active Thermochemical Tables analyses, demonstrates an important role for such processes. The pathway to acetaldehyde is shown to be a direct result of substitution of acetone's methyl group by a free H atom, while propene formation arises from OH substitution in the enol form of acetone by a free H atom.

8.
J Chem Phys ; 155(18): 184109, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773951

RESUMO

Empirical, highly accurate non-relativistic electronic total atomization energies (eTAEs) are established by combining experimental or computationally converged treatments of the nuclear motion and relativistic contributions with the total atomization energies of HF, CO, N2, and H2O obtained from the Active Thermochemical Tables. These eTAEs, which have estimated (2σ) uncertainties of less than 10 cm-1 (0.12 kJ mol-1), form the basis for an analysis of high-level ab initio quantum chemical calculations that aim at reproducing these eTAEs for the title molecules. The results are then employed to analyze the performance of the high-accuracy extrapolated ab initio thermochemistry, or High-Accuracy Extrapolated Ab Initio Thermochemistry (HEAT), family of theoretical methods. The method known as HEAT-345(Q), in particular, is found to benefit from fortuitous error cancellation between its treatment of the zero-point energy, extrapolation errors in the Hartree-Fock and coupled cluster contributions, neglect of post-(T) core-correlation, and the basis-set error involved in higher-level correlation corrections. In addition to shedding light on a longstanding curiosity of the HEAT protocol-where the cheapest HEAT-345(Q) performs comparably to the theoretically more complete HEAT-456QP procedure-this study lays the foundation for extended HEAT variants that offer substantial improvements in accuracy relative to the established approaches.

9.
J Phys Chem A ; 123(16): 3481-3496, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30901227

RESUMO

High-level coupled cluster calculations obtained with the Feller-Peterson-Dixon (FPD) approach and new data from the most recent version of the Active Thermochemical Tables (ATcT) are used to reassess the enthalpy of formation of gas-phase C2H2O4 (oxalic acid). The theoretical value was further calibrated by comparing FPD and ATcT gas-phase enthalpies of formation for H2CO (formaldehyde) and the two low-lying conformations of C2H4O2 ( syn and anti acetic acid). The FPD approach produces a theoretical enthalpy of formation of gas-phase oxalic acid of -732.2 ± 4.0 kJ/mol at 298.15 K (-721.8 ± 4.0 kJ/mol at 0 K). An independently obtained ATcT value, based on reassessing the existent experimental determinations and expanding the resulting thermochemical network with select mid-level composite theoretical results, disagrees with several earlier recommendations that were based solely on experimental determinations but is in excellent accord with the current FPD value. The inclusion of the latter in the most recent ATcT thermochemical network produces a further refined value for the gas-phase enthalpy of formation, -731.6 ± 1.2 kJ/mol at 298.15 K (-721.0 ± 1.2 kJ/mol at 0 K). The condensed-phase ATcT enthalpy of formation of oxalic acid is -829.7 ± 0.5 kJ/mol, and the resulting sublimation enthalpy is 98.1 ± 1.3 kJ/mol, both at 298.15 K.

10.
J Phys Chem A ; 123(19): 4212-4231, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30998012

RESUMO

The best currently available set of temperature-dependent nonrigid rotor anharmonic oscillator (NRRAO) thermochemical and thermophysical properties of hydroxymethyl radical is presented. The underlying partition function relies on a critically evaluated complement of accurate experimental and theoretical data and is constructed using a two-pronged strategy that combines contributions from large amplitude motions obtained from direct counts, with contributions from the other internal modes of motion obtained from analytic NRRAO expressions. The contributions from the two strongly coupled large-amplitude motions of CH2OH, OH torsion and CH2 wag, are based on energy levels obtained by solving the appropriate two-dimensional projection of a fully dimensional potential energy surface that was recently obtained at the CCSD(T)/cc-pVTZ level of theory. The contributions of the remaining seven, more rigid, vibrational modes and of the external rotations are captured by NRRAO corrections to the standard rigid rotor harmonic oscillator (RRHO) treatment, which include corrections for vibrational anharmonicities, rotation-vibration interaction, Coriolis effects, and low temperature. The basic spectroscopic constants needed for the construction of the initial RRHO partition function rely on experimental ground-state rotational constants and the best available experimental fundamentals, additionally complemented by fundamentals obtained from the variational solution of the full-dimensional potential energy surface using a recently developed two-component multilayer Lanczos algorithm. The higher-order spectroscopic constants necessary for the NRRAO corrections are extracted from a second-order variational perturbation treatment (VPT2) of the same potential energy surface. The Lanczos solutions of the fully dimensional surface are validated against available experimental data, and the VPT2 results and the solutions of the reduced dimensionality surface are validated both against the Lanczos solutions and available experiments. The NRRAO thermophysical and thermochemical properties, given both in tabular form and as seven- and nine-coefficient NASA polynomials, are compared to previous results. In addition, the latest ATcT values for the enthalpy of formation of CH2OH at 298.15 K (0 K), -16.75 ± 0.27 kJ/mol (-10.45 ± 0.27 kJ/mol), and of other related CH nO m species ( n = 0-4, m = 0,1) are reported, together with a plethora of related bond dissociation enthalpies (BDEs), such as the C-H, O-H, and C-O bond dissociation enthalpies of methanol, 402.16 ± 0.26 kJ/mol (395.61 ± 0.26 kJ/mol), 440.34 ± 0.26 kJ/mol (434.86 ± 0.26 kJ/mol), and 384.85 ± 0.15 kJ/mol (377.14 ± 0.15 kJ/mol), respectively, and analogous BDEs for hydroxymethyl, 343.67 ± 0.37 kJ/mol (339.16 ± 0.37 kJ/mol), 125.54 ± 0.28 kJ/mol (121.11 ± 0.28 kJ/mol), and 445.86 ± 0.29 kJ/mol (438.76 ± 0.29 kJ/mol), respectively. The reasons governing the alternation between strong and weak sequential H atom BDEs of methanol are also discussed.

11.
J Phys Chem A ; 123(26): 5673-5682, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31244124

RESUMO

An automated computational thermochemistry protocol based on explicitly correlated coupled-cluster theory was designed to produce highly accurate enthalpies of formation and atomization energies for small- to medium-sized molecular species (3-12 atoms). Each potential source of error was carefully examined, and the sizes of contributions to the total atomization enthalpies were used to generate uncertainty estimates. The protocol was first used to generate total atomization enthalpies for a family of four molecular species exhibiting a variety of charges, multiplicities, and electronic ground states. The new protocol was shown to be in good agreement with the Active Thermochemical Tables database for the four species: the methyl peroxy radical, methoxyoxoniumylidene (methyl peroxy cation), methyl peroxy anion, and methyl hydroperoxide. Updating the Active Thermochemical Tables to include those results yielded significantly improved accuracy for the formation enthalpies of those species. The derived protocol was then used to predict formation enthalpies for the larger ethyl peroxy family of species.

12.
J Chem Phys ; 150(22): 224102, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31202223

RESUMO

A number of economical modifications to the high-accuracy extrapolated ab initio thermochemistry (HEAT) model chemistry are evaluated. The two resulting schemes, designated as mHEAT and mHEAT+, are designed for efficient and pragmatic evaluation of molecular energies in systems somewhat larger than can be practically studied by the unapproximated HEAT scheme. It is found that mHEAT+ produces heats of formation with nearly subchemical (±1 kJ/mol) accuracy at a substantially reduced cost relative to the full scheme. Total atomization energies calculated using the new thermochemical recipes are compared to the results of the HEAT-345(Q) model chemistry, and enthalpies of formation for the three protocols are also compared to Active Thermochemical Tables. Finally, a small selection of transition states is studied using mHEAT and mHEAT+, which illuminates some interesting features of reaction barriers and serves as an initial benchmark of the performance of these model chemistries for chemical kinetics applications.

13.
Phys Chem Chem Phys ; 19(14): 9592-9605, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28345688

RESUMO

We report on the successful implementation of a high-resolution vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection method for the study of unimolecular dissociation of quantum-state- or energy-selected molecular ions. As a test case, we have determined the 0 K appearance energy (AE0) for the formation of methylium, CH3+, from methane, CH4, as AE0(CH3+/CH4) = 14.32271 ± 0.00013 eV. This value has a significantly smaller error limit, but is otherwise consistent with previous laboratory and/or synchrotron-based studies of this dissociative photoionization onset. Furthermore, the sum of the VUV laser PFI-PI spectra obtained for the parent CH4+ ion and the fragment CH3+ ions of methane is found to agree with the earlier VUV pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of methane, providing unambiguous validation of the previous interpretation that the sharp VUV-PFI-PE step observed at the AE0(CH3+/CH4) threshold ensues because of higher PFI detection efficiency for fragment CH3+ than for parent CH4+. This, in turn, is a consequence of the underlying high-n Rydberg dissociation mechanism for the dissociative photoionization of CH4, which was proposed in previous synchrotron-based VUV-PFI-PE and VUV-PFI-PEPICO studies of CH4. The present highly accurate 0 K dissociative ionization threshold for CH4 can be utilized to derive accurate values for the bond dissociation energies of methane and methane cation. For methane, the straightforward application of sequential thermochemistry via the positive ion cycle leads to some ambiguity because of two competing VUV-PFI-PE literature values for the ionization energy of methyl radical. The ambiguity is successfully resolved by applying the Active Thermochemical Tables (ATcT) approach, resulting in D0(H-CH3) = 432.463 ± 0.027 kJ mol-1 and D0(H-CH3+) = 164.701 ± 0.038 kJ mol-1.

14.
J Phys Chem A ; 121(32): 6187-6198, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28727457

RESUMO

In order to address the accuracy of the long-standing experimental enthalpy of formation of gas-phase hydrazine, fully confirmed in earlier versions of Active Thermochemical Tables (ATcT), the provenance of that value is re-examined in light of new high-end calculations of the Feller-Peterson-Dixon (FPD) variety. An overly optimistic determination of the vaporization enthalpy of hydrazine, which created an unrealistically strong connection between the gas phase thermochemistry and the calorimetric results defining the thermochemistry of liquid hydrazine, was identified as the probable culprit. The new enthalpy of formation of gas-phase hydrazine, based on balancing all available knowledge, was determined to be 111.57 ± 0.47 kJ/mol at 0 K (97.42 ± 0.47 kJ/mol at 298.15 K). Close agreement was found between the ATcT (even excluding the latest theoretical result) and the FPD enthalpy.

15.
J Phys Chem A ; 121(46): 8799-8806, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-28877582

RESUMO

The adiabatic ionization energy of hydrogen peroxide (HOOH) is investigated, both by means of theoretical calculations and theoretically assisted reanalysis of previous experimental data. Values obtained by three different approaches: 10.638 ± 0.012 eV (purely theoretical determination), 10.649 ± 0.005 eV (reanalysis of photoelectron spectrum), and 10.645 ± 0.010 eV (reanalysis of photoionization spectrum) are in excellent mutual agreement. Further refinement of the latter two values to account for asymmetry of the rotational profile of the photoionization origin band leads to a reduction of 0.007 ± 0.006 eV, which tends to bring them into even closer alignment with the purely theoretical value. Detailed analysis of this fundamental quantity by the Active Thermochemical Tables approach, using the present results and extant literature, gives a final estimate of 10.641 ± 0.006 eV.

16.
J Phys Chem A ; 121(24): 4658-4677, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28517940

RESUMO

Two methyl esters were examined as models for the pyrolysis of biofuels. Dilute samples (0.06-0.13%) of methyl acetate (CH3COOCH3) and methyl butanoate (CH3CH2CH2COOCH3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis microreactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed microreactor were about 20 Torr and residence times through the reactors were roughly 25-150 µs. Reactor temperatures of 300-1600 K were explored. Decomposition of CH3COOCH3 commences at 1000 K, and the initial products are (CH2═C═O and CH3OH). As the microreactor is heated to 1300 K, a mixture of CH2═C═O and CH3OH, CH3, CH2═O, H, CO, and CO2 appears. The thermal cracking of CH3CH2CH2COOCH3 begins at 800 K with the formation of CH3CH2CH═C═O and CH3OH. By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of CH3CH2CH═C═O, CH3OH, CH3, CH2═O, CO, CO2, CH3CH═CH2, CH2CHCH2, CH2═C═CH2, HCCCH2, CH2═C═C═O, CH2═CH2, HC≡CH, and CH2═C═O. On the basis of the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R-CH2-COOCH3. The lowest-energy fragmentation will be a 4-center elimination of methanol to form the ketene RCH═C═O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH2 + CO2 + CH3) and (RCH2 + CO + CH2═O + H). Thermal cracking of the ß C-C bond of the methyl ester will generate the radicals (R and H) as well as CH2═C═O + CH2═O. The thermochemistry of methyl acetate and its fragmentation products were obtained via the Active Thermochemical Tables (ATcT) approach, resulting in ΔfH298(CH3COOCH3) = -98.7 ± 0.2 kcal mol-1, ΔfH298(CH3CO2) = -45.7 ± 0.3 kcal mol-1, and ΔfH298(COOCH3) = -38.3 ± 0.4 kcal mol-1.

17.
J Chem Phys ; 144(8): 084309, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26931704

RESUMO

The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

18.
J Chem Phys ; 143(18): 184313, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567668

RESUMO

Spectroscopic constants (Te, re, B0, ωe, and ωexe) have been calculated for the low-lying electronic states of UF, UF(+), UCl, and UCl(+) using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess Hamiltonians for the U atom. Spin orbit (SO) effects were included a posteriori using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component methods for U(+) and UF(+). Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω = 9/2 ground states. The first excited state of UCl was calculated to be an Ω = 7/2 state at 78 cm(-1) as opposed to the same state at 435 cm(-1) in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise, UF(+) and UCl(+) both have Ω = 4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states was energetically closer together in UCl(+) than in UF(+), ranging up to 776 cm(-1) in UF(+) and only 438 cm(-1) in UCl(+). As in previous studies, the final PP-based SO-CASPT2 results for UF(+) and UF agree well with experiment and are expected to be predictive for UCl and UCl(+), which are reported here for the first time.

19.
J Chem Phys ; 143(18): 184308, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567663

RESUMO

The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP3 through IP6.

20.
J Chem Phys ; 141(24): 244308, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25554152

RESUMO

Reaction energies have been calculated for a series of reactions involving UF6, UO3, UO2(OH)2, and UO2F2 using coupled cluster singles and doubles with perturbative triples, CCSD(T), with a series of correlation consistent basis sets, including newly developed pseudopotential (PP)- and all-electron (AE) Douglas-Kroll-Hess-based sets for the U atom. The energies were calculated using a Feller-Peterson-Dixon composite approach in which CCSD(T) complete basis set (CBS) limits were combined with a series of additive contributions for spin-orbit coupling, outer-core correlation, and quantum electrodynamics effects. The calculated reaction enthalpies (both PP and AE) were combined with the accurately known heat of formation of UF6 to determine the enthalpies of formation of UO3, UO2(OH)2, and UO2F2. The contribution to the reaction enthalpies due to correlation of the 5s5p5d electrons of U was observed to be very slowly convergent with basis set and at the CBS limit their impact on the final enthalpies was on the order of 1 kcal/mol or less. For these closed shell molecules, spin-orbit effects contributed about 1 kcal/mol to the final enthalpies. Interestingly, the PP and AE approaches yielded quite different spin-orbit contributions (similar magnitude but opposite in sign), but the total scalar plus spin-orbit results from the two approaches agreed to within ∼1 kcal/mol of each other. The final composite heat of formation for UO2F2 was in excellent agreement with experiment, while the two results obtained for UO3 were just outside the ±2.4 kcal/mol error bars of the currently recommended experimental value. An improved enthalpy of formation (298 K) for UO2(OH)2 is predicted from this work to be -288.7 ± 3 kcal/mol, compared to the currently accepted experimental value of -292.7 ± 6 kcal/mol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA