Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(10): 1751-1766, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39115691

RESUMO

The natural polymer chitin is an abundant source for valuable N-acetylchitooligosaccharides and N-acetylglucosamine applicable in several industries. The endochitinase Chit36-TA from Trichoderma asperellum was recombinantly expressed in Komagataella phaffii for the enzymatic degradation of chitin from unused insect exuviae into N-acetylchitooligosaccharides. Chit36-TA was purified by Ni-NTA affinity chromatography and subsequently biochemically characterized. After deglycosylation, the endochitinase had a molecular weight of 36 kDa. The optimum pH for Chit36-TA was 4.5. The temperature maximum of Chit36-TA was determined to be 50 °C, while it maintained > 93% activity up to 60 °C. The chitinase was thermostable up to 45 °C and exhibited ~ 50% activity after a 15 min incubation at 57 °C. Chit36-TA had a maximum specific enzyme activity of 50 nkat/mg with a Km value of 289 µM with 4-methylumbelliferyl-N,N',N″-triacetyl-ß-chitotrioside as substrate. Most tested cations, organic solvents and reagents were well-tolerated by the endochitinase, except for SDS (1 mM), Cu2+ (10 mM) and Mn2+ (10 mM), which had stronger inhibitory effects with residual activities of 3, 41 and 28%, respectively. With a degree of hydrolysis of 32% applying colloidal shrimp chitin (1% (w/v)) and 12% on insect larvae (1% (w/v)) after 24 h, the endochitinase was found to be suitable for the conversion of colloidal chitin as well as chitin from black soldier fly larvae into water-soluble N-acetylchitooligosaccharides. To prove scalability, a bioreactor process was developed in which a 55-fold higher enzyme activity of 49 µkat/l and a tenfold higher protein expression of 1258 mg/l were achieved.


Assuntos
Quitina , Quitinases , Hypocreales , Proteínas Recombinantes , Animais , Quitina/metabolismo , Quitina/química , Quitinases/química , Quitinases/metabolismo , Quitinases/genética , Quitinases/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Hypocreales/enzimologia , Simuliidae , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/biossíntese , Saccharomycetales/enzimologia , Concentração de Íons de Hidrogênio
2.
Appl Environ Microbiol ; 80(17): 5282-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24951788

RESUMO

Wastewater contains large amounts of pharmaceuticals, pathogens, and antimicrobial resistance determinants. Only a little is known about the dissemination of resistance determinants and changes in soil microbial communities affected by wastewater irrigation. Community DNAs from Mezquital Valley soils under irrigation with untreated wastewater for 0 to 100 years were analyzed by quantitative real-time PCR for the presence of sul genes, encoding resistance to sulfonamides. Amplicon sequencing of bacterial 16S rRNA genes from community DNAs from soils irrigated for 0, 8, 10, 85, and 100 years was performed and revealed a 14% increase of the relative abundance of Proteobacteria in rainy season soils and a 26.7% increase in dry season soils for soils irrigated for 100 years with wastewater. In particular, Gammaproteobacteria, including potential pathogens, such as Pseudomonas, Stenotrophomonas, and Acinetobacter spp., were found in wastewater-irrigated fields. 16S rRNA gene sequencing of 96 isolates from soils irrigated with wastewater for 100 years (48 from dry and 48 from rainy season soils) revealed that 46% were affiliated with the Gammaproteobacteria (mainly potentially pathogenic Stenotrophomonas strains) and 50% with the Bacilli, whereas all 96 isolates from rain-fed soils (48 from dry and 48 from rainy season soils) were affiliated with the Bacilli. Up to six types of antibiotic resistance were found in isolates from wastewater-irrigated soils; sulfamethoxazole resistance was the most abundant (33.3% of the isolates), followed by oxacillin resistance (21.9% of the isolates). In summary, we detected an increase of potentially harmful bacteria and a larger incidence of resistance determinants in wastewater-irrigated soils, which might result in health risks for farm workers and consumers of wastewater-irrigated crops.


Assuntos
Irrigação Agrícola/métodos , Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Microbiologia do Solo , Águas Residuárias , Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Farmacorresistência Bacteriana , Genes Bacterianos , México , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
J Bacteriol ; 195(19): 4436-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913323

RESUMO

pIP501 is a conjugative broad-host-range plasmid frequently present in nosocomial Enterococcus faecalis and Enterococcus faecium isolates. We focus here on the functional analysis of the type IV secretion gene traG, which was found to be essential for pIP501 conjugative transfer between Gram-positive bacteria. The TraG protein, which localizes to the cell envelope of E. faecalis harboring pIP501, was expressed and purified without its N-terminal transmembrane helix (TraGΔTMH) and shown to possess peptidoglycan-degrading activity. TraGΔTMH was inhibited by specific lytic transglycosylase inhibitors hexa-N-acetylchitohexaose and bulgecin A. Analysis of the TraG sequence suggested the presence of two domains which both could contribute to the observed cell wall-degrading activity: an N-terminal soluble lytic transglycosylase domain (SLT) and a C-terminal cysteine-, histidine-dependent amidohydrolases/peptidases (CHAP) domain. The protein domains were expressed separately, and both degraded peptidoglycan. A change of the conserved glutamate residue in the putative catalytic center of the SLT domain (E87) to glycine resulted in almost complete inactivity, which is consistent with this part of TraG being a predicted lytic transglycosylase. Based on our findings, we propose that TraG locally opens the peptidoglycan to facilitate insertion of the Gram-positive bacterial type IV secretion machinery into the cell envelope.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus faecalis/enzimologia , Enterococcus faecium/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Peptidoglicano/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Proteínas de Bactérias/genética , Conjugação Genética , Enterococcus faecalis/genética , Enterococcus faecium/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Oligossacarídeos/farmacologia , Plasmídeos , Prolina/análogos & derivados , Prolina/farmacologia
4.
Front Microbiol ; 6: 163, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784901

RESUMO

Long-term irrigation with untreated wastewater can lead to an accumulation of antibiotic substances and antibiotic resistance genes in soil. However, little is known so far about effects of wastewater, applied for decades, on the abundance of IncP-1 plasmids and class 1 integrons which may contribute to the accumulation and spread of resistance genes in the environment, and their correlation with heavy metal concentrations. Therefore, a chronosequence of soils that were irrigated with wastewater from 0 to 100 years was sampled in the Mezquital Valley in Mexico in the dry season. The total community DNA was extracted and the absolute and relative abundance (relative to 16S rRNA genes) of antibiotic resistance genes (tet(W), tet(Q), aadA), class 1 integrons (intI1), quaternary ammonium compound resistance genes (qacE+qacEΔ1) and IncP-1 plasmids (korB) were quantified by real-time PCR. Except for intI1 and qacE+qacEΔ1 the abundances of selected genes were below the detection limit in non-irrigated soil. Confirming the results of a previous study, the absolute abundance of 16S rRNA genes in the samples increased significantly over time (linear regression model, p < 0.05) suggesting an increase in bacterial biomass due to repeated irrigation with wastewater. Correspondingly, all tested antibiotic resistance genes as well as intI1 and korB significantly increased in abundance over the period of 100 years of irrigation. In parallel, concentrations of the heavy metals Zn, Cu, Pb, Ni, and Cr significantly increased. However, no significant positive correlations were observed between the relative abundance of selected genes and years of irrigation, indicating no enrichment in the soil bacterial community due to repeated wastewater irrigation or due to a potential co-selection by increasing concentrations of heavy metals.

5.
PLoS One ; 10(7): e0132949, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26172831

RESUMO

In this study, we investigated the impact of the cell membrane composition of E. faecalis on its recognition by the host immune system. To this end, we employed an E. faecalis deletion mutant (ΔbgsA) that does not synthesize the major cell membrane glycolipid diglycosyl-diacylglycerol (DGlcDAG). Proteomic analysis revealed that 13 of a total of 21 upregulated surface-associated proteins of E. faecalis ΔbgsA were lipoproteins. This led to a total lipoprotein content in the cell membrane of 35.8% in ΔbgsA compared to only 9.4% in wild-type bacteria. Increased lipoprotein content strongly affected the recognition of ΔbgsA by mouse macrophages in vitro with an increased stimulation of TNF-α production by heat-fixed bacteria and secreted antigens. Inactivation of the prolipoprotein diacylglycerol transferase (lgt) in ΔbgsA abrogated TNF-α induction by a ΔbgsA_lgt double mutant indicating that lipoproteins mediate increased activation of mouse macrophages by ΔbgsA. Heat-fixed ΔbgsA bacteria, culture supernatant, or cell membrane lipid extract activated transfected HEK cells in a TLR2-dependent fashion; the same was not true of wild-type bacteria. In mice infected intraperitoneally with a sublethal dose of E. faecalis we observed a 70% greater mortality in mice infected with ΔbgsA compared with wild-type-infected mice. Increased mortality due to ΔbgsA infection was associated with elevated plasma levels of the inflammatory cytokines TNF-α, IL-6 and MIP-2. In summary, our results provide evidence that an E. faecalis mutant lacking its major bilayer forming glycolipid DGlcDAG upregulates lipoprotein expression leading to increased activation of the host innate immune system and virulence in vivo.


Assuntos
Membrana Celular/imunologia , Enterococcus faecalis/imunologia , Glicolipídeos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Lipoproteínas/imunologia , Animais , Proteínas de Bactérias/imunologia , Linhagem Celular , Quimiocina CXCL2/sangue , Feminino , Células HEK293 , Humanos , Imunidade Inata/imunologia , Interleucina-6/sangue , Macrófagos , Lipídeos de Membrana/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Receptor 2 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia , Virulência/imunologia
6.
PLoS One ; 7(9): e45397, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049795

RESUMO

Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19-28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15 × 10(-3) ± 0.22 × 10(-3) copies/16S rDNA) than in non-irrigated soils (4.35 × 10(-5)± 1.00 × 10(-5) copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61 × 10(-4) ± 0.59 × 10(-4) versus 2.99 × 10(-5) ± 0.26 × 10(-5) copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.


Assuntos
Irrigação Agrícola , Enterococcus/genética , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Águas Residuárias/química , Águas Residuárias/microbiologia , Antibacterianos/análise , Produtos Biológicos/análise , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus/isolamento & purificação , Monitoramento Ambiental , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , México , Medicamentos sob Prescrição/análise , RNA Ribossômico 16S/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA