Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769369

RESUMO

Competition for the amino acid arginine by endothelial nitric-oxide synthase (NOS3) and (pro-)inflammatory NO-synthase (NOS2) during endotoxemia appears essential in the derangement of the microcirculatory flow. This study investigated the role of NOS2 and NOS3 combined with/without citrulline supplementation on the NO-production and microcirculation during endotoxemia. Wildtype (C57BL6/N background; control; n = 36), Nos2-deficient, (n = 40), Nos3-deficient (n = 39) and Nos2/Nos3-deficient mice (n = 42) received a continuous intravenous LPS infusion alone (200 µg total, 18 h) or combined with L-citrulline (37.5 mg, last 6 h). The intestinal microcirculatory flow was measured by side-stream dark field (SDF)-imaging. The jejunal intracellular NO production was quantified by in vivo NO-spin trapping combined with electron spin-resonance (ESR) spectrometry. Amino-acid concentrations were measured by high-performance liquid chromatography (HPLC). LPS infusion decreased plasma arginine concentration in control and Nos3-/- compared to Nos2-/- mice. Jejunal NO production and the microcirculation were significantly decreased in control and Nos2-/- mice after LPS infusion. No beneficial effects of L-citrulline supplementation on microcirculatory flow were found in Nos3-/- or Nos2-/-/Nos3-/- mice. This study confirms that L-citrulline supplementation enhances de novo arginine synthesis and NO production in mice during endotoxemia with a functional NOS3-enzyme (control and Nos2-/- mice), as this beneficial effect was absent in Nos3-/- or Nos2-/-/Nos3-/- mice.


Assuntos
Arginina/metabolismo , Citrulina/administração & dosagem , Endotoxemia/patologia , Microcirculação , NADPH Oxidase 2/fisiologia , NADPH Oxidases/fisiologia , Óxido Nítrico/metabolismo , Animais , Endotoxemia/tratamento farmacológico , Endotoxemia/etiologia , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Intestinos/patologia , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Am J Hum Genet ; 94(3): 385-94, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24581742

RESUMO

Moyamoya is a cerebrovascular condition characterized by a progressive stenosis of the terminal part of the internal carotid arteries (ICAs) and the compensatory development of abnormal "moyamoya" vessels. The pathophysiological mechanisms of this condition, which leads to ischemic and hemorrhagic stroke, remain unknown. It can occur as an isolated cerebral angiopathy (so-called moyamoya disease) or in association with various conditions (moyamoya syndromes). Here, we describe an autosomal-recessive disease leading to severe moyamoya and early-onset achalasia in three unrelated families. This syndrome is associated in all three families with homozygous mutations in GUCY1A3, which encodes the α1 subunit of soluble guanylate cyclase (sGC), the major receptor for nitric oxide (NO). Platelet analysis showed a complete loss of the soluble α1ß1 guanylate cyclase and showed an unexpected stimulatory role of sGC within platelets. The NO-sGC-cGMP pathway is a major pathway controlling vascular smooth-muscle relaxation, vascular tone, and vascular remodeling. Our data suggest that alterations of this pathway might lead to an abnormal vascular-remodeling process in sensitive vascular areas such as ICA bifurcations. These data provide treatment options for affected individuals and strongly suggest that investigation of GUCY1A3 and other members of the NO-sGC-cGMP pathway is warranted in both isolated early-onset achalasia and nonsyndromic moyamoya.


Assuntos
Acalasia Esofágica/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/fisiologia , Doença de Moyamoya/metabolismo , Óxido Nítrico/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Adolescente , Adulto , Plaquetas/metabolismo , Criança , Pré-Escolar , GMP Cíclico/metabolismo , Feminino , Genótipo , Homozigoto , Humanos , Masculino , Músculo Liso Vascular/metabolismo , Mutação , Óxido Nítrico/metabolismo , Linhagem , Adesividade Plaquetária , Agregação Plaquetária , Guanilil Ciclase Solúvel , Adulto Jovem
3.
J Sex Med ; 14(2): 196-204, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28161078

RESUMO

INTRODUCTION: The nitric oxide (NO), soluble guanylate cyclase (sGC), and cyclic guanosine monophosphate (cGMP) pathway is the leading pathway in penile erection. AIM: To assess erectile function in a mouse model in which sGC is deficient in heme (apo-sGC) and unresponsive to NO. METHODS: Mutant mice (sGCß1ki/ki) that express an sGC enzyme that retains basal activity but fails to respond to NO because of heme deficiency (apo-sGC) were used. Isolated corpora cavernosa from sGCß1ki/ki and wild-type mice were mounted in vitro for isometric tension recordings in response to sGC-dependent and -independent vasorelaxant agents. In addition, the erectile effects of some of these agents were tested in vivo at intracavernosal injection. MAIN OUTCOME MEASURES: In vitro and in vivo recordings of erectile responses in sGCß1ki/ki and wild-type mice after stimulation with sGC-dependent and -independent vasorelaxant agents. RESULTS: NO-induced responses were abolished in sGCß1ki/ki mice in vitro and in vivo. The ability of the heme-dependent, NO-independent sGC stimulator BAY 41-2272 to relax the corpora cavernosa was markedly attenuated in sGCß1ki/ki mice. In contrast, the relaxation response to the heme- and NO-independent sGC activator BAY 58-2667 was significantly enhanced in sGCß1ki/ki mice. The relaxing effect of sGC-independent vasorelaxant agents was similar in wild-type and sGCß1ki/ki mice, illustrating that the observed alterations in vasorelaxation are limited to NO-sGC-cGMP-mediated processes. CONCLUSION: Our results suggest that sGC is the sole target of NO in erectile physiology. Furthermore, this study provides indirect evidence that, in addition to sGCα1ß1, sGCα2ß1 is important for erectile function. In addition, the significant relaxation observed in sGCß1ki/ki mice with the cumulative addition of the sGC activator BAY 58-2667 indicates that sGC activators might offer value in treating erectile dysfunction.


Assuntos
GMP Cíclico/metabolismo , Disfunção Erétil/fisiopatologia , Heme/deficiência , Guanilil Ciclase Solúvel/metabolismo , Animais , Modelos Animais de Doenças , Guanilato Ciclase/metabolismo , Humanos , Masculino , Camundongos , Óxido Nítrico/metabolismo , Ereção Peniana/efeitos dos fármacos , Pênis/fisiopatologia
4.
BMC Anesthesiol ; 17(1): 76, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615047

RESUMO

BACKGROUND: Volatile anesthetics increase levels of the neurotransmitter nitric oxide (NO) and the secondary messenger molecule cyclic guanosine monophosphate (cGMP) in the brain. NO activates the enzyme guanylyl cyclase (GC) to produce cGMP. We hypothesized that the NO-GC-cGMP pathway contributes to anesthesia-induced unconsciousness. METHODS: Sevoflurane-induced loss and return of righting reflex (LORR and RORR, respectively) were studied in wild-type mice (WT) and in mice congenitally deficient in the GC-1α subunit (GC-1-/- mice). Spatial distributions of GC-1α and the GC-2α subunit in the brain were visualized by in situ hybridization. Brain cGMP levels were measured in WT and GC-1-/- mice after inhaling oxygen with or without 1.2% sevoflurane for 20 min. RESULTS: Higher concentrations of sevoflurane were required to induce LORR in GC-1-/- mice than in WT mice (1.5 ± 0.1 vs. 1.1 ± 0.2%, respectively, n = 14 and 14, P < 0.0001). Similarly, RORR occurred at higher concentrations of sevoflurane in GC-1-/- mice than in WT mice (1.0 ± 0.1 vs. 0.8 ± 0.1%, respectively, n = 14 and 14, P < 0.0001). Abundant GC-1α and GC-2α mRNA expression was detected in the cerebral cortex, medial habenula, hippocampus, and cerebellum. Inhaling 1.2% sevoflurane for 20 min increased cGMP levels in the brains of WT mice from 2.6 ± 2.0 to 5.5 ± 3.7 pmol/mg protein (n = 13 and 10, respectively, P = 0.0355) but not in GC-1-/- mice. CONCLUSION: Congenital deficiency of GC-1α abolished the ability of sevoflurane anesthesia to increase cGMP levels in the whole brain, and increased the concentration of sevoflurane required to induce LORR. Impaired NO-cGMP signaling raises the threshold for producing sevoflurane-induced unconsciousness in mice.


Assuntos
Anestésicos Inalatórios/farmacologia , Guanilato Ciclase/genética , Éteres Metílicos/farmacologia , Animais , Encéfalo/metabolismo , Guanosina Monofosfato/metabolismo , Camundongos Knockout , Reflexo de Endireitamento/efeitos dos fármacos , Sevoflurano
5.
Am J Physiol Heart Circ Physiol ; 310(11): H1790-800, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199131

RESUMO

Dysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension, a prevalent and often sex-specific risk factor for cardiovascular disease. We previously reported that mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1 (-/-) mice) display sex- and strain-specific hypertension: male but not female sGCα1 (-/-) mice are hypertensive on an 129S6 (S6) but not a C57BL6/J (B6) background. We aimed to uncover the genetic and molecular basis of the observed sex- and strain-specific blood pressure phenotype. Via linkage analysis, we identified a suggestive quantitative trait locus associated with elevated blood pressure in male sGCα1 (-/-)S6 mice. This locus encompasses Cyp4a12a, encoding the predominant murine synthase of the vasoconstrictor 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE). Renal expression of Cyp4a12a in mice was associated with genetic background, sex, and testosterone levels. In addition, 20-HETE levels were higher in renal preglomerular microvessels of male sGCα1 (-/-)S6 than of male sGCα1 (-/-)B6 mice. Furthermore, treating male sGCα1 (-/-)S6 mice with the 20-HETE antagonist 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) lowered blood pressure. Finally, 20-HEDE rescued the genetic background- and testosterone-dependent impairment of acetylcholine-induced relaxation in renal interlobar arteries associated with sGCα1 deficiency. Elevated Cyp4a12a expression and 20-HETE levels render mice susceptible to hypertension and vascular dysfunction in a setting of sGCα1 deficiency. Our data identify Cyp4a12a as a candidate sex-specific blood pressure-modifying gene in the context of deficient NO-sGC signaling.


Assuntos
Androgênios/farmacologia , Família 4 do Citocromo P450/genética , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Feminino , Ligação Genética , Hipertensão/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Knockout , Locos de Características Quantitativas , Fatores Sexuais , Guanilil Ciclase Solúvel/genética , Testosterona/sangue
6.
Am J Respir Cell Mol Biol ; 52(6): 762-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25353067

RESUMO

Inspiratory resistive breathing (RB), encountered in obstructive lung diseases, induces lung injury. The soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway is down-regulated in chronic and acute animal models of RB, such as asthma, chronic obstructive pulmonary disease, and in endotoxin-induced acute lung injury. Our objectives were to: (1) characterize the effects of increased concurrent inspiratory and expiratory resistance in mice via tracheal banding; and (2) investigate the contribution of the sGC/cGMP pathway in RB-induced lung injury. Anesthetized C57BL/6 mice underwent RB achieved by restricting tracheal surface area to 50% (tracheal banding). RB for 24 hours resulted in increased bronchoalveolar lavage fluid cellularity and protein content, marked leukocyte infiltration in the lungs, and perturbed respiratory mechanics (increased tissue resistance and elasticity, shifted static pressure-volume curve right and downwards, decreased static compliance), consistent with the presence of acute lung injury. RB down-regulated sGC expression in the lung. All manifestations of lung injury caused by RB were exacerbated by the administration of the sGC inhibitor, 1H-[1,2,4]oxodiazolo[4,3-]quinoxalin-l-one, or when RB was performed using sGCα1 knockout mice. Conversely, restoration of sGC signaling by prior administration of the sGC activator BAY 58-2667 (Bayer, Leverkusen, Germany) prevented RB-induced lung injury. Strikingly, direct pharmacological activation of sGC with BAY 58-2667 24 hours after RB reversed, within 6 hours, the established lung injury. These findings raise the possibility that pharmacological targeting of the sGC-cGMP axis could be used to ameliorate lung dysfunction in obstructive lung diseases.


Assuntos
Guanilato Ciclase/metabolismo , Pneumopatias Obstrutivas/enzimologia , Lesão Pulmonar/enzimologia , Resistência das Vias Respiratórias , Animais , Benzoatos/farmacologia , Benzoatos/uso terapêutico , GMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Guanilato Ciclase/antagonistas & inibidores , Pneumopatias Obstrutivas/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL
7.
J Sex Med ; 12(4): 906-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25689429

RESUMO

INTRODUCTION: Because of their nitric oxide (NO)-donating capacities, oxime derivatives have shown to offer some therapeutic perspective for the treatment of erectile dysfunction (ED) as well as cardiovascular diseases. However, to date the in vivo effect of these oximes on erectile function remains unknown. In many disease states oxidative stress occurs, impairing NO-mediated relaxations. Hence the influence of oxidative stress on oxime-induced effects is also of interest. AIMS: This study aimed to evaluate the in vivo effect of formaldoxime (FAL) and formamidoxime (FAM) on blood pressure and intracavernosal pressure (ICP); and to examine the role of soluble guanylyl cyclase (sGC) and the influence of oxidative stress on the FAL and FAM responses. METHODS: Blood pressure and ICP were monitored in vivo after resp. intravenous or intracavernosal injection of FAL and FAM. Moreover isometric tension was measured in vitro on isolated mice corpora cavernosa (CC), thoracic aorta, and femoral artery in organ baths. The role of sGC was investigated using transgenic mice lacking the alpha 1 subunit of sGC. MAIN OUTCOME MEASURES: Mean arterial pressure (MAP) and ICP were measured after FAL/FAM injection. In vitro relaxation of CC strips was evaluated in response to addition of FAL/FAM. RESULTS: In vivo both FAL and FAM elicit a dose-dependent lowering of blood pressure (maximal ΔMAP: 33.66 ± 4.07 mm Hg [FAL] and 20.43 ± 2.06 mm Hg [FAM] ) as well as an increase of ICP (maximal increase of ICP/MAP: 70.29 ± 2.88% [FAL] and 52.91 ± 8.61% [FAM] ). The FAL/FAM effect is significantly lower in knockout vs. wild-type mice. Oxidative stress has an inhibitory effect on corporal NO-mediated relaxations induced by electrical field stimulation, acetylcholine, and sodium nitroprusside whereas the responses to 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate sodium salt, FAL and FAM were not influenced. CONCLUSIONS: Oximes induce erection which is mediated by sGC. The oxime-induced relaxations are resistant to oxidative stress, which increases their therapeutic potential for the treatment of ED.


Assuntos
Guanilato Ciclase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oximas/farmacologia , Ereção Peniana/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Acetilcolina/farmacologia , Animais , Aorta Torácica , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Disfunção Erétil/fisiopatologia , Artéria Femoral , Humanos , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Pênis/irrigação sanguínea , Guanilil Ciclase Solúvel
8.
J Sex Med ; 12(2): 303-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25443137

RESUMO

INTRODUCTION: The red wine polyphenols resveratrol and quercetin are known for their vasorelaxant and antioxidant capacity, which is assumed to rely on the activation of the nitric oxide (NO)/soluble guanylyl cyclase (sGC) pathway. Vasodilators as well as antioxidants can regulate penile erection and be beneficial for the treatment of erectile dysfunction (ED). AIMS: The goal of this study was to evaluate the NO/sGC dependency of the relaxant effect of resveratrol and quercetin on mice aorta and corpora cavernosa (CC), as well as to explore their influence on oxidative stress-induced ED. METHODS: Isolated mice aorta and CC were mounted for isometric tension recordings into organ baths. Cumulative concentration-response curves were constructed for resveratrol and quercetin in the absence/presence of inhibitors of the NO/sGC pathway. In addition, in CC the effect of resveratrol and quercetin was studied on NO-mediated relaxations using acetylcholine (Ach), sodium nitroprusside (SNP), and electrical field stimulation (EFS). In certain experiments, corporal tissues were exposed to oxidative stress using palmitic acid (PA, 0.5 mM). MAIN OUTCOME MEASURES: Corporal responses to resveratrol and quercetin were measured in the presence/absence of inhibitors of different molecular pathways. The effect of resveratrol and quercetin incubation on Ach-, SNP-, or EFS-mediated responses was explored in the presence/absence of PA. RESULTS: While both polyphenols are potent vasodilators of mice aorta, only resveratrol relaxes mice CC. The relaxation response to resveratrol on aorta was diminished in sGCα1 (-/-) mice, but not on CC. The polyphenols did not influence Ach-, SNP-, or EFS-mediated relaxations as such. Resveratrol, but not quercetin, was able to significantly reverse PA-induced decrease of EFS relaxations. CONCLUSION: The red wine compound resveratrol, but not quercetin, relaxes isolated mice CC concentration-dependently through mechanisms independent of the NO/sGC pathway. Resveratrol is a more potent antioxidant than quercetin, being able to restore decreased neuronal NO responses in mice CC.


Assuntos
Polifenóis/farmacologia , Quercetina/farmacologia , Estilbenos/farmacologia , Vasodilatadores/farmacologia , Vinho , Acetilcolina/farmacologia , Animais , Antioxidantes/farmacologia , Guanilato Ciclase/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ereção Peniana/efeitos dos fármacos , Pênis/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Resveratrol , Guanilil Ciclase Solúvel
9.
Crit Care Med ; 42(8): e560-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24717467

RESUMO

OBJECTIVE: Early detection and start of appropriate treatment are highly correlated with survival of sepsis and septic shock, but the currently available predictive tools are not sensitive enough to identify patients at risk. DESIGN: Linear (time and frequency domain) and nonlinear (unifractal and multiscale complexity dynamics) measures of beat-to-beat interval variability were analyzed in two mouse models of inflammatory shock to determine if they are sensitive enough to predict outcome. SETTING: University research laboratory. SUBJECTS: Blood pressure transmitter-implanted female C57BL/6J mice. INTERVENTIONS: IV administration of tumor necrosis factor (n = 11) or lipopolysaccharide (n = 14). MEASUREMENTS AND MAIN RESULTS: Contrary to linear indices of variability, unifractal dynamics, and absolute heart rate or blood pressure, quantification of complex beat-to-beat dynamics using multiscale entropy was able to predict survival outcome starting as early as 40 minutes after induction of inflammatory shock. Based on these results, a new and clinically relevant index of multiscale entropy was developed that scores the key features of a multiscale entropy profile. Contrary to multiscale entropy, multiscale entropy scoring can be followed as a function of time to monitor disease progression with limited loss of information. CONCLUSIONS: Analysis of multiscale complexity of beat-to-beat dynamics at high temporal resolution has potential as a sensitive prognostic tool with translational power that can predict survival outcome in systemic inflammatory conditions such as sepsis and septic shock.


Assuntos
Entropia , Modelos Lineares , Dinâmica não Linear , Índice de Gravidade de Doença , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Animais , Pressão Sanguínea , Diagnóstico Precoce , Feminino , Frequência Cardíaca , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Taxa de Sobrevida , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Resultado do Tratamento , Fator de Necrose Tumoral alfa
10.
Nitric Oxide ; 36: 36-43, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24269486

RESUMO

Sepsis and septic shock result from an exacerbated systemic inflammatory reaction to infection. Their incidence is rising, and they have recently become the main cause of death in intensive care units. Septic shock is defined as sepsis accompanied by life-threatening refractory hypotension, for which excessive nitric oxide (NO), produced by inducible NO synthase iNOS, is thought responsible. LPS, a vital outer membrane component of Gram-negative bacteria, mimics most of the septic effects and is widely used as a model for septic shock. TLR4 is the signal-transducing receptor for LPS, evidenced by the resistance of TLR4-deficient C3H/HeJ and C57BL/10ScNJ mice. As expected, we found that TLR4 deficiency precludes LPS-induced cytokine production, independent of the purity of the LPS preparation. However, various conventional LPS preparations induced NO in TLR4-deficient mice to the same level as in control animals, while ultrapure LPS did not, indicating the presence of NO-producing contaminant(s). Nevertheless, despite identical iNOS induction pattern and systemic NO levels, the contaminant does not cause hypotension, hypothermia, or any other sign of morbidity. Using mice deficient for TLR2, TRL3, TLR4, TRL2x4, TLR9, MyD88 or TRIF, we found that the contaminant signals via TLR2 and MyD88. In conclusion, conventional LPS preparations generally used in endotoxic shock research contain TLR2 agonists that induce iNOS and high levels of systemic NO as such, and synergize with LPS towards the production of pro-inflammatory cytokines, morbidity and mortality. Surprisingly, the excessive iNOS-derived systemic NO production induced by impure LPS in TLR4⁻/⁻ is not accompanied by hypotension or morbidity.


Assuntos
Endotoxinas/metabolismo , Óxido Nítrico/metabolismo , Sepse/metabolismo , Receptor 4 Toll-Like/genética , Animais , Hipotensão/genética , Inflamação , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/genética
11.
Pulm Pharmacol Ther ; 29(1): 1-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043200

RESUMO

Nitric oxide (NO) is a gaseotransmitter, which is involved in many signaling processes in health and disease. Three enzymes generate NO from l-arginine, with citrulline formed as a by-product: neuronal NO synthase (nNOS or NOS1), endothelial NOS (eNOS or NOS3) and inducible NOS (iNOS or NOS2). NO is a ligand of soluble guanylyl cyclase (sGC), an intracellular heterodimer enzyme that catalyzes the conversion of guanosine triphosphate (GTP) to cyclic GMP (cGMP). cGMP further activates protein kinase G that eventually reduces the smooth muscle tone in bronchi or vessels. Phosphodiesterase 5 (PDE5) degrades cGMP to GMP. However, NO reacts with superoxide anion (O2(-)), leading to formation of the pro-inflammatory molecule peroxynitrite. Under physiological conditions, NO plays a homeostatic bronchoprotective role in healthy subjects. In obstructive airway diseases, NO can be beneficial by its bronchodilating effect, but could also be detrimental by the formation of peroxynitrite. Since asthma and COPD are associated with increased levels of exhaled NO, chronic inflammation and increased airway smooth muscle tone, the NO/sGC/cGMP pathway could be involved in these highly prevalent obstructive airway diseases. Here we review the involvement of NO, NO synthases, guanylyl cyclases, cGMP and phophodiesterase-5 in asthma and COPD and potential therapeutic approaches to modulate this pathway.


Assuntos
Asma/fisiopatologia , Óxido Nítrico/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Animais , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Guanilato Ciclase/metabolismo , Humanos , Óxido Nítrico Sintase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/fisiologia , Guanilil Ciclase Solúvel , Superóxidos/metabolismo
12.
BMC Physiol ; 14: 5, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25185746

RESUMO

BACKGROUND: MAPK-activated protein kinase 2 (MK2) plays a pivotal role in the cell response to (inflammatory) stress. Among others, MK2 is known to be involved in the regulation of cytokine mRNA metabolism and regulation of actin cytoskeleton dynamics. Previously, MK2-deficient mice were shown to be highly resistant to LPS/d-Galactosamine-induced hepatitis. Additionally, research in various disease models has indicated the kinase as an interesting inhibitory drug target for various acute or chronic inflammatory diseases. RESULTS: We show that in striking contrast to the known resistance of MK2-deficient mice to a challenge with LPS/D-Gal, a low dose of tumor necrosis factor (TNF) causes hyperacute mortality via an oxidative stress driven mechanism. We identified in vivo defects in the stress fiber response in endothelial cells, which could have resulted in reduced resistance of the endothelial barrier to deal with exposure to oxidative stress. In addition, MK2-deficient mice were found to be more sensitive to cecal ligation and puncture-induced sepsis. CONCLUSIONS: The capacity of the endothelial barrier to deal with inflammatory and oxidative stress is imperative to allow a regulated immune response and maintain endothelial barrier integrity. Our results indicate that, considering the central role of TNF in pro-inflammatory signaling, therapeutic strategies examining pharmacological inhibition of MK2 should take potentially dangerous side effects at the level of endothelial barrier integrity into account.


Assuntos
Inflamação/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Necrose Tumoral alfa/toxicidade , Animais , Permeabilidade Capilar , Células Endoteliais/enzimologia , Inflamação/induzido quimicamente , Inflamação/mortalidade , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/enzimologia , Lipopolissacarídeos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Sepse/enzimologia , Sepse/mortalidade , Fibras de Estresse/enzimologia
13.
Am J Respir Crit Care Med ; 188(7): 789-99, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23841447

RESUMO

RATIONALE: Soluble guanylyl cyclase (sGC), a cyclic guanosine 5'-monophosphate-generating enzyme, regulates smooth muscle tone and exerts antiinflammatory effects in animal models of asthma and acute lung injury. In chronic obstructive pulmonary disease (COPD), primarily caused by cigarette smoke (CS), lung inflammation persists and smooth muscle tone remains elevated, despite ample amounts of nitric oxide that could activate sGC. OBJECTIVES: To determine the expression and function of sGC in patients with COPD and in a murine model of COPD. METHODS: Expression of sGCα1, α2, and ß1 subunits was examined in lungs of never-smokers, smokers without airflow limitation, and patients with COPD; and in C57BL/6 mice after 3 days, 4 weeks, and 24 weeks of CS exposure. The functional role of sGC was investigated in vivo by measuring bronchial responsiveness to serotonin in mice using genetic and pharmacologic approaches. MEASUREMENTS AND MAIN RESULTS: Pulmonary expression of sGC, both at mRNA and protein level, was decreased in smokers without airflow limitation and in patients with COPD, and correlated with disease severity (FEV1%). In mice, exposure to CS reduced sGC, cyclic guanosine 5'-monophosphate levels, and protein kinase G activity. sGCα1(-/-) mice exposed to CS exhibited bronchial hyperresponsiveness to serotonin. Activation of sGC by BAY 58-2667 restored the sGC signaling and attenuated bronchial hyperresponsiveness in CS-exposed mice. CONCLUSIONS: Down-regulation of sGC because of CS exposure might contribute to airflow limitation in COPD.


Assuntos
Guanilato Ciclase/fisiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Serotonina/fisiologia , Fumar/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos , Idoso , Animais , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Guanilato Ciclase/análise , Guanilato Ciclase/deficiência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/deficiência , Mucosa Respiratória/química , Fumar/fisiopatologia , Guanilil Ciclase Solúvel
14.
Am J Physiol Heart Circ Physiol ; 305(8): H1189-200, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23934853

RESUMO

The goal of this study was to identify the cellular mechanisms responsible for cardiac dysfunction in endotoxemic mice. We aimed to differentiate the roles of cGMP [produced by soluble guanylyl cyclase (sGC)] versus oxidative posttranslational modifications of Ca(2+) transporters. C57BL/6 mice [wild-type (WT) mice] were administered lipopolysaccharide (LPS; 25 µg/g ip) and euthanized 12 h later. Cardiomyocyte sarcomere shortening and Ca(2+) transients (ΔCai) were depressed in LPS-challenged mice versus baseline. The time constant of Ca(2+) decay (τCa) was prolonged, and sarcoplasmic reticulum Ca(2+) load (CaSR) was depressed in LPS-challenged mice (vs. baseline), indicating decreased activity of sarco(endo)plasmic Ca(2+)-ATPase (SERCA). L-type Ca(2+) channel current (ICa,L) was also decreased after LPS challenge, whereas Na(+)/Ca(2+) exchange activity, ryanodine receptors leak flux, or myofilament sensitivity for Ca(2+) were unchanged. All Ca(2+)-handling abnormalities induced by LPS (the decrease in sarcomere shortening, ΔCai, CaSR, ICa,L, and τCa prolongation) were more pronounced in mice deficient in the sGC main isoform (sGCα1(-/-) mice) versus WT mice. LPS did not alter the protein expression of SERCA and phospholamban in either genotype. After LPS, phospholamban phosphorylation at Ser(16) and Thr(17) was unchanged in WT mice and was increased in sGCα1(-/-) mice. LPS caused sulphonylation of SERCA Cys(674) (as measured immunohistochemically and supported by iodoacetamide labeling), which was greater in sGCα1(-/-) versus WT mice. Taken together, these results suggest that cardiac Ca(2+) dysregulation in endotoxemic mice is mediated by a decrease in L-type Ca(2+) channel function and oxidative posttranslational modifications of SERCA Cys(674), with the latter (at least) being opposed by sGC-released cGMP.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Endotoxemia/metabolismo , Coração/fisiopatologia , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , GMP Cíclico/biossíntese , Cisteína/metabolismo , Guanilato Ciclase/genética , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcômeros , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo
15.
Br J Pharmacol ; 180 Suppl 2: S241-S288, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123155

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Receptores Acoplados a Proteínas G , Canais Iônicos/química , Receptores Citoplasmáticos e Nucleares
16.
Circulation ; 124(15): 1645-53, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21931083

RESUMO

BACKGROUND: Sudden cardiac arrest (CA) is a leading cause of death worldwide. Breathing nitric oxide (NO) reduces ischemia/reperfusion injury in animal models and in patients. The objective of this study was to learn whether inhaled NO improves outcomes after CA and cardiopulmonary resuscitation (CPR). METHODS AND RESULTS: Adult male mice were subjected to potassium-induced CA for 7.5 minutes whereupon CPR was performed with chest compression and mechanical ventilation. One hour after CPR, mice were extubated and breathed air alone or air supplemented with 40 ppm NO for 23 hours. Mice that were subjected to CA/CPR and breathed air exhibited a poor 10-day survival rate (4 of 13), depressed neurological and left ventricular function, and increased caspase-3 activation and inflammatory cytokine induction in the brain. Magnetic resonance imaging revealed brain regions with marked water diffusion abnormality 24 hours after CA/CPR in mice that breathed air. Breathing air supplemented with NO for 23 hours starting 1 hour after CPR attenuated neurological and left ventricular dysfunction 4 days after CA/CPR and markedly improved 10-day survival rate (11 of 13; P=0.003 versus mice breathing air). The protective effects of inhaled NO on the outcome after CA/CPR were associated with reduced water diffusion abnormality, caspase-3 activation, and cytokine induction in the brain and increased serum nitrate/nitrite levels. Deficiency of the α1 subunit of soluble guanylate cyclase, a primary target of NO, abrogated the ability of inhaled NO to improve outcomes after CA/CPR. CONCLUSIONS: These results suggest that NO inhalation after CA and successful CPR improves outcome via soluble guanylate cyclase-dependent mechanisms.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca/terapia , Óxido Nítrico/administração & dosagem , Administração por Inalação , Ar , Animais , Apoptose , Pressão Sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Caspase 3/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Difusão , Ativação Enzimática/efeitos dos fármacos , Guanilato Ciclase/química , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Parada Cardíaca/mortalidade , Parada Cardíaca/patologia , Parada Cardíaca/fisiopatologia , Mediadores da Inflamação/antagonistas & inibidores , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Nervoso/fisiopatologia , Nitratos/sangue , Nitritos/sangue , Respiração , Solubilidade , Taxa de Sobrevida , Fatores de Tempo , Função Ventricular Esquerda , Função Ventricular Direita , Água/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 301(1): H157-63, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21536853

RESUMO

In the heart, nitric oxide (NO) modulates contractile function; however, the mechanisms responsible for this effect are incompletely understood. NO can elicit effects via a variety of mechanisms including S-nitrosylation and stimulation of cGMP synthesis by soluble guanylate cyclase (sGC). sGC is a heterodimer comprised of a ß(1)- and an α(1)- or α(2)-subunit. sGCα(1)ß(1) is the predominant isoform in the heart. To characterize the role of sGC in the regulation of cardiac contractile function by NO, we compared left ventricular cardiac myocytes (CM) isolated from adult mice deficient in the sGC α(1)-subunit (sGCα(1)(-/-)) and from wild-type (WT) mice. Sarcomere shortening under basal conditions was less in sGCα(1)(-/-) CM than in WT CM. To activate endogenous NO synthesis from NO synthase 3, CM were incubated with the ß(3)-adrenergic receptor (ß(3)-AR) agonist BRL 37344. BRL 37344 decreased cardiac contractility in WT CM but not in sGCα(1)(-/-) myocytes. Administration of spermine NONOate, an NO donor compound, did not affect sarcomeric shortening in CM of either genotype; however, in the presence of isoproterenol, addition of spermine NONOate reduced sarcomere shortening in WT but not in sGCα(1)(-/-) CM. Neither BRL 37344 nor spermine NONOate altered calcium handling in CM of either genotype. These findings suggest that sGCα(1) exerts a positive inotropic effect under basal conditions, as well as mediates the negative inotropic effect of ß(3)-AR signaling. Additionally, our work demonstrates that sGCα(1)ß(1) is required for NO to depress ß(1)/ß(2)-AR-stimulated cardiac contractility and that this modulation is independent of changes in calcium handling.


Assuntos
Antiarrítmicos , Cálcio/metabolismo , Guanilato Ciclase/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico/farmacologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Etanolaminas/farmacologia , Guanilato Ciclase/genética , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Receptor Muscarínico M2/fisiologia , Receptores Adrenérgicos beta 1/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Receptores Adrenérgicos beta 3/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura , Guanilil Ciclase Solúvel , Espermina/análogos & derivados , Espermina/farmacologia
18.
Am J Physiol Heart Circ Physiol ; 300(4): H1477-83, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21257915

RESUMO

Reperfusion injury limits the benefits of revascularization in the treatment of myocardial infarction (MI). Breathing nitric oxide (NO) reduces cardiac ischemia-reperfusion injury in animal models; however, the signaling pathways by which inhaled NO confers cardioprotection remain uncertain. The objective of this study was to learn whether inhaled NO reduces cardiac ischemia-reperfusion injury by activating the cGMP-generating enzyme, soluble guanylate cyclase (sGC), and to investigate whether bone marrow (BM)-derived cells participate in the sGC-mediated cardioprotective effects of inhaled NO. Wild-type (WT) mice and mice deficient in the sGC α(1)-subunit (sGCα(1)(-/-) mice) were subjected to cardiac ischemia for 1 h, followed by 24 h of reperfusion. During ischemia and for the first 10 min of reperfusion, mice were ventilated with oxygen or with oxygen supplemented with NO (80 parts per million). The ratio of MI size to area at risk (MI/AAR) did not differ in WT and sGCα(1)(-/-) mice that did not breathe NO. Breathing NO decreased MI/AAR in WT mice (41%, P = 0.002) but not in sGCα(1)(-/-) mice (7%, P = not significant). BM transplantation was performed to restore WT BM-derived cells to sGCα(1)(-/-) mice. Breathing NO decreased MI/AAR in sGCα(1)(-/-) mice carrying WT BM (39%, P = 0.031). In conclusion, these results demonstrate that a global deficiency of sGCα(1) does not alter the degree of cardiac ischemia-reperfusion injury in mice. The cardioprotective effects of inhaled NO require the presence of sGCα(1). Moreover, our studies suggest that BM-derived cells are key mediators of the ability of NO to reduce cardiac ischemia-reperfusion injury.


Assuntos
Cardiotônicos/farmacologia , Guanilato Ciclase/metabolismo , Óxido Nítrico/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Guanilato Ciclase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/enzimologia , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/enzimologia , Receptores Citoplasmáticos e Nucleares/genética , Guanilil Ciclase Solúvel
19.
BMC Biotechnol ; 11: 97, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22026914

RESUMO

BACKGROUND: Research involving gene expression profiling and clinical applications, such as diagnostics and prognostics, often require a DNA array platform that is flexibly customisable and cost-effective, but at the same time is highly sensitive and capable of accurately and reproducibly quantifying the transcriptional expression of a vast number of genes over the whole transcriptome dynamic range using low amounts of RNA sample. Hereto, a set of easy-to-implement practical optimisations to the design of cDNA-based nylon macroarrays as well as sample (33)P-labeling, hybridisation protocols and phosphor screen image processing were analysed for macroarray performance. RESULTS: The here proposed custom macroarray platform had an absolute sensitivity as low as 50,000 transcripts and a linear range of over 5 log-orders. Its quality of identifying differentially expressed genes was at least comparable to commercially available microchips. Interestingly, the quantitative accuracy was found to correlate significantly with corresponding reversed transcriptase - quantitative PCR values, the gold standard gene expression measure (Pearson's correlation test p < 0.0001). Furthermore, the assay has low cost and input RNA requirements (0.5 µg and less) and has a sound reproducibility. CONCLUSIONS: Results presented here, demonstrate for the first time that self-made cDNA-based nylon macroarrays can produce highly reliable gene expression data with high sensitivity and covering the entire mammalian dynamic range of mRNA abundances. Starting off from minimal amounts of unamplified total RNA per sample, a reasonable amount of samples can be assayed simultaneously for the quantitative expression of hundreds of genes in an easily customisable and cost-effective manner.


Assuntos
Perfilação da Expressão Gênica/métodos , Macrófagos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/análise , Transcriptoma , Primers do DNA , Perfilação da Expressão Gênica/instrumentação , Humanos , Nylons/química , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , RNA Mensageiro/biossíntese , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
20.
Basic Res Cardiol ; 106(4): 635-43, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21394564

RESUMO

Nitric oxide (NO)-dependent soluble guanylate cyclase (sGC) activation is an important component of cardiac signal transduction pathways, including the cardioprotective signaling cascade induced by ischemic preconditioning (IPC). The sGCα subunit, which binds to the common sGCß1 subunit, exists in two different isoforms, sGCα1 and sGCα2, but their relative physiological roles remain unknown. In the present study, we studied Langendorff-perfused isolated hearts of genetically engineered mice lacking functional sGCα1 (sGCα1KO mice), which is the predominant isoform in the heart. Our results show that the loss of sGCα1 has a positive inotropic and lusitropic effect on basal cardiac function, indicating an important role for sGCα1 in regulating basal myocardial contractility. Surprisingly, IPC led to a similar 35-40% reduction in infarct size and concomitant protein kinase Cε (PKCε) phosphorylation in both wild-type (WT) and sGCα1KO hearts subjected to 40 min of global ischemia and reperfusion. Inhibition of the activation of all sGC isoforms by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10 µmol/L) completely abolished the protection by IPC in WT and sGCα1KO hearts. NO-stimulated cGMP production was severely attenuated in sGCα1KO hearts compared to WT hearts, indicating that the sGCα2 isoform only produces minute amounts of cGMP after NO stimulation. Taken together, our results indicate that although sGCα1 importantly regulates cardiac contractility, it is not required for cardioprotection by IPC. Instead, our results suggest that possibly only minimal sGC activity, which in sGCα1KO hearts is provided by the sGCα2 isoform, is sufficient to transduce the cardioprotective signal induced by IPC via phosphorylation of PKCε.


Assuntos
Guanilato Ciclase/fisiologia , Precondicionamento Isquêmico Miocárdico , Contração Miocárdica , Animais , GMP Cíclico/biossíntese , Isoenzimas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA