Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 22(10)2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934124

RESUMO

This work demonstrated the successful application of N-halamine technology for wound dressings rendered antimicrobial by facile and inexpensive processes. Four N-halamine compounds, which possess different functional groups and chemistry, were synthesized. The N-halamine compounds, which contained oxidative chlorine, the source of antimicrobial activity, were impregnated into or coated onto standard non-antimicrobial wound dressings. N-halamine-employed wound dressings inactivated about 6 to 7 logs of Staphylococcus aureus and Pseudomonas aeruginosa bacteria in brief periods of contact time. Moreover, the N-halamine-modified wound dressings showed superior antimicrobial efficacies when compared to commercially available silver wound dressings. Zone of inhibition tests revealed that there was no significant leaching of the oxidative chlorine from the materials, and inactivation of bacteria occurred by direct contact. Shelf life stability tests showed that the dressings were stable to loss of oxidative chlorine when they were stored for 6 months in dark environmental conditions. They also remained stable under florescent lighting for up to 2 months of storage. They could be stored in opaque packaging to improve their shelf life stabilities. In vitro skin irritation testing was performed using a three-dimensional human reconstructed tissue model (EpiDerm™). No potential skin irritation was observed. In vitro cytocompatibility was also evaluated. These results indicate that N-halamine wound dressings potentially can be employed to prevent infections, while at the same time improving the healing process by eliminating undesired bacterial growth.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bandagens/microbiologia , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
2.
Carbohydr Polym ; 134: 598-608, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26428163

RESUMO

The preparation of alginate-chitosan fibers, through wet spinning technique, as well as the study of their properties as a function of chitosan's molecular weight and retention time in the coagulation bath, is presented and discussed in this work. Scanning electron microscopy (SEM) revealed that the fibers presented irregular and rough surfaces, with a grooved and heavily striated morphology distributed throughout the structure. Dynamic mechanical analysis (DMA) showed that, with the exception of elongation at break, the incorporation of chitosan into the fibers improved their tensile properties. The in vitro release profile of sulfathiazole as a function of chitosan's molecular weight indicated that the fibers are viable carriers of drugs. Kinetic models showed that the release of the model drug is first-order, and the release mechanism is governed by the Korsmeyer-Peppas model. Likewise, fibers loaded with sulfathiazole showed excellent inhibition of Escherichia coli growth after an incubation time of 24h at 37 °C.


Assuntos
Alginatos/química , Quitosana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Cinética , Fenômenos Mecânicos , Peso Molecular , Sulfatiazol , Sulfatiazóis/química , Sulfatiazóis/farmacologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA