Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(22): 225001, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567918

RESUMO

For more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic 2p-3d transitions, 3C and 3D, in Fe XVII ions found oscillator strength ratios f(3C)/f(3D) disagreeing with theory, but uncertainties had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA III, and reach, at a millionfold lower photon intensities, a 10 times higher spectral resolution, and 3 times smaller uncertainty than earlier work. Our final result of f(3C)/f(3D)=3.09(8)(6) supports many of the earlier clean astrophysical and laboratory observations, while departing by five sigmas from our own newest large-scale ab initio calculations, and excluding all proposed explanations, including those invoking nonlinear effects and population transfers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32020916

RESUMO

To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 - 300 keV band and the Kashima NICT radio observatory in the 1.4 - 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1,000 and 100 GRPs were simultaneously observed at the main and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main or inter-pulse phases. All variations are within the 2 sigma fluctuations of the X-ray fluxes at the pulse peaks, and the 3 sigma upper limits of variations of main- or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2 - 300 keV band. The values become 25% or 110% for main or inter-pulse GRPs, respectively, when the phase width is restricted into the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and the 70-300 keV are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of main- and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) ×10-11 erg cm-2, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere and the number of photon-emitting particles temporally increases. However, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a > 0.02% brightening of the pulse-peak flux under such conditions.

3.
Phys Rev E ; 105(1-2): 015204, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193188

RESUMO

We have inferred the energy distribution of trapped ions in an electron beam ion trap (EBIT) from simulations of the spatial distribution of Fe^{13+} ions and a comparison with measured visible light images of the ion cloud. We simulated the cloud of Fe^{13+} ions by computing ion trajectories in the EBIT for different ion energy distributions used to initialize the trajectories. We then performed a least-squares fit to infer the ion energy distribution that best reproduced the measured ion cloud. These best-fit distributions were typically non-Maxwellian. For electron beam energies of 395-475 eV and electron beam currents of 1-9 mA, we find that the average ion energy is in the range of 10-300 eV. We also find that the average ion energy increases with increasing beam current approximately as 〈E〉≈25I_{e}eV, where I_{e} is the electron beam current in mA. We have also compared our results to Maxwell-Boltzmann-distribution ion clouds. We find that our best-fit non-thermal distributions have an 〈E〉 that is less than half that of the T from the best-fit Maxwell-Boltzmann distributions (〈E〉/q)/T=0.41±0.05.

4.
Phys Rev Lett ; 103(16): 163001, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19905691

RESUMO

We present a measurement of the K-shell spectrum from highly charged xenon ions recorded with a high-energy x-ray calorimeter spectrometer array that can distinguish between various theories for the atomic structure of the two electron system. The array was designed to provide high resolution with high quantum efficiency in the 10-60 keV x-ray range which allows us to resolve blends that afflicted previous measurements. A precision of better than 2 eV was achieved in the measurement of the Xe52+ and Xe53+ K-shell transitions located near 31 keV, which is an order of magnitude better than previously reported.

5.
Rev Sci Instrum ; 79(10): 10E307, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044469

RESUMO

The EBIT calorimeter spectrometer (ECS) is a new high-resolution, broadband x-ray spectrometer that has recently been installed at the Electron Beam Ion Trap Facility (EBIT) at the Lawrence Livermore National Laboratory. The ECS is an entirely new production class spectrometer that replaces the XRS/EBIT spectrometer that has been operating at EBIT since 2000. The ECS utilizes a 32-pixel x-ray calorimeter array from the XRS instrument on the Suzaku x-ray observatory. Eighteen of the pixels are optimized for the 0.1-10 keV band and yield 4.5 eV full width at half maximum energy resolution and 95% quantum efficiency at 6 keV. In addition, the ECS includes 14 detector pixels that are optimized for the high-energy band with a bandpass from 0.5 to over 100 keV with 34 eV resolution and 32% quantum efficiency at 60 keV. The ECS detector array is operated at 50 mK using a five stage cryogenic system that is entirely automated. The instrument takes data continuously for over 65 h with a 2.5 h recycle time. The ECS is a nondispersive, broadband, highly efficient spectrometer that is one of the prime instruments at the EBIT facility. The instrument is used for studies of absolute cross sections, charge exchange recombination, and x-ray emission from nonequilibrium plasmas, among other measurements in our laboratory astrophysics program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA