Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13391-13398, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691098

RESUMO

Inverted p-i-n perovskite solar cells (PSCs) are easy to process but need improved interface characteristics with reduced energy loss to prevent efficiency drops when increasing the active photovoltaic area. Here, we report a series of poly ferrocenyl molecules that can modulate the perovskite surface enabling the construction of small- and large-area PSCs. We found that the perovskite-ferrocenyl interaction forms a hybrid complex with enhanced surface coordination strength and activated electronic states, leading to lower interfacial nonradiative recombination and charge transport resistance losses. The resulting PSCs achieve an enhanced efficiency of up to 26.08% for small-area devices and 24.51% for large-area devices (1.0208 cm2). Moreover, the large-area PSCs maintain >92% of the initial efficiency after 2000 h of continuous operation at the maximum power point under 1-sun illumination and 65 °C.

2.
Chem Commun (Camb) ; 57(88): 11673-11676, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34672313

RESUMO

The reaction of [{(ArNCMe)2CH}Al] (Ar = 2,6-di-iso-propylphenyl) with aryl methyl ethers proceeded with alumination of the sp3 C-O bond. The selectivity of this reaction could be switched by inclusion of a catalyst. In the presence of [Pd(PCy3)2], chemoselective sp2 C-O bond functionalisation was observed. Kinetic isotope experiments and DFT calculations support a catalytic pathway involving the ligand-assisted oxidative addition of the sp2 C-O bond to a Pd-Al intermetallic complex.

3.
PeerJ ; 9: e12460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34824917

RESUMO

Terrestrial carnivores are among the most imperiled species worldwide, yet some species are resilient and are recovering in human-dominated landscapes after decades or centuries of absence. Bobcat (Lynx rufus) populations were extirpated from much of Midwestern US in the mid-1800's, and are currently expanding and recolonizing their former range. In this study, we investigated multi-scale habitat selection for Ohio's expanding bobcat population, and examined habitat connectivity in order to evaluate the conduits for dispersal statewide. We used citizen observations collected between 1978 and 2019 and logistic regression to evaluate population-level habitat selection, and GPS telemetry data for 20 individuals collected between 2012 and 2014 and a distribution-weighted exponential Resource Selection Function to evaluate individual-level habitat selection within home ranges. At the population level, bobcats selected for higher amounts of forest and pasture (at a 50 km2 scale) and herbaceous vegetation (at 15-50 50 km2 scales), thus overall heterogeneous forested habitat. At individual (home range) level, bobcats selected for forested habitats with low road density and farther away from high traffic roads; they also showed weak selection for open habitat at the home range level. Male home ranges were significantly greater than female home ranges. Lastly, we used the population-level spatial outputs (i.e. habitat suitability map) to parameterize habitat connectivity models using circuit theory in the program Circuitscape. We tested three relationships between habitat suitability and resistance to movement and used a subset of data on potential dispersing individuals to evaluate which relationship performed best. All three relationships performed almost equally well, and we calculated a weighted averaged connectivity map as our final map. Habitat was highly permeable to movements between core areas of two genetically distinct subpopulations located in southeastern Ohio. We also identified potential dispersal corridors from the core areas to other regions of Ohio dominated by agriculture and suburban development via forested riparian corridors. Overall, our analysis offers new information on habitat selection and connectivity in a rebounding felid population and offers important ecological information for wildlife management strategies. We recommend that the suitability and connectivity models should be periodically updated until the population reaches an equilibrium, and be integrated with data from neighboring states for a comprehensive assessment of a conservation success story.

4.
Chem Sci ; 11(30): 7842-7849, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34094156

RESUMO

A palladium pre-catalyst, [Pd(PCy3)2] is reported for the efficient and selective C-F alumination of fluorobenzenes with the aluminium(i) reagent [{(ArNCMe)2CH}Al] (1, Ar = 2,6-di-iso-propylphenyl). The catalytic protocol results in the transformation of sp2 C-F bonds to sp2 C-Al bonds and provides a route to reactive organoaluminium complexes (2a-h) from fluorocarbons. The catalyst is highly active. Reactions proceed within 5 minutes at 25 °C (and at appreciable rates at even -50 °C) and the scope includes low-fluorine-content substrates such as fluorobenzene, difluorobenzenes and trifluorobenzenes. The reaction proceeds with complete chemoselectivity (C-F vs. C-H) and high regioselectivities (>90% for C-F bonds adjacent to the most acidic C-H sites). The heterometallic complex [Pd(PCy3)(1)2] was shown to be catalytically competent. Catalytic C-F alumination proceeds with a KIE of 1.1-1.3. DFT calculations have been used to model potential mechanisms for C-F bond activation. These calculations suggest that two competing mechanisms may be in operation. Pathway 1 involves a ligand-assisted oxidative addition to [Pd(1)2] and leads directly to the product. Pathway 2 involves a stepwise C-H → C-F functionalisation mechanism in which the C-H bond is broken and reformed along the reaction coordinate, guiding the catalyst to an adjacent C-F site. This second mechanism explains the experimentally observed regioselectivity. Experimental support for this C-H activation playing a key role in C-F alumination was obtained by employing [{(MesNCMe)2CH}AlH2] (3, Mes = 2,4,6-tri-methylphenyl) as a reagent in place of 1. In this instance, the kinetic C-H alumination intermediate could be isolated. Under catalytic conditions this intermediate converts to the thermodynamic C-F alumination product.

5.
Chem Sci ; 11(30): 7850-7857, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34094157

RESUMO

Non-catalysed and catalysed reactions of aluminium reagents with furans, dihydrofurans and dihydropyrans were investigated and lead to ring-expanded products due to the insertion of the aluminium reagent into a C-O bond of the heterocycle. Specifically, the reaction of [{(ArNCMe)2CH}Al] (Ar = 2,6-di-iso-propylphenyl, 1) with furans proceeded between 25 and 80 °C leading to dearomatised products due to the net transformation of a sp2 C-O bond into a sp2 C-Al bond. The kinetics of the reaction of 1 with furan were found to be 1st order with respect to 1 with activation parameters ΔH ‡ = +19.7 (±2.7) kcal mol-1, ΔS ‡ = -18.8 (±7.8) cal K-1 mol-1 and ΔG ‡ 298 K = +25.3 (±0.5) kcal mol-1 and a KIE of 1.0 ± 0.1. DFT calculations support a stepwise mechanism involving an initial (4 + 1) cycloaddition of 1 with furan to form a bicyclic intermediate that rearranges by an α-migration. The selectivity of ring-expansion is influenced by factors that weaken the sp2 C-O bond through population of the σ*-orbital. Inclusion of [Pd(PCy3)2] as a catalyst in these reactions results in expansion of the substrate scope to include 2,3-dihydrofurans and 3,4-dihydropyrans and improves selectivity. Under catalysed conditions, the C-O bond that breaks is that adjacent to the sp2C-H bond. The aluminium(iii) dihydride reagent [{(MesNCMe)2CH}AlH2] (Mes = 2,4,6-trimethylphenyl, 2) can also be used under catalytic conditions to effect a dehydrogenative ring-expansion of furans. Further mechanistic analysis shows that C-O bond functionalisation occurs via an initial C-H bond alumination. Kinetic products can be isolated that are derived from installation of the aluminium reagent at the 2-position of the heterocycle. C-H alumination occurs with a KIE of 4.8 ± 0.3 consistent with a turnover limiting step involving oxidative addition of the C-H bond to the palladium catalyst. Isomerisation of the kinetic C-H aluminated product to the thermodynamic C-O ring expansion product is an intramolecular process that is again catalysed by [Pd(PCy3)2]. DFT calculations suggest that the key C-O bond breaking step involves attack of an aluminium based metalloligand on the 2-palladated heterocycle. The new methodology has been applied to important platform chemicals from biomass.

6.
Chem Sci ; 10(35): 8083-8093, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31762968

RESUMO

The reactions of a series of ß-diketiminate stabilised aluminium dihydrides with ruthenium bis(phosphine), palladium bis(phosphine) and palladium cyclopentadienyl complexes is reported. In the case of ruthenium, alane coordination occurs with no evidence for hydrogen loss resulting in the formation of ruthenium complexes with a pseudo-octahedral geometry and cis-relation of phosphine ligands. These new ruthenium complexes have been characterised by multinuclear and variable temperature NMR spectroscopy, IR spectroscopy and single crystal X-ray diffraction. In the case of palladium, a series of structural snapshots of alane dehydrogenation have been isolated and crystallographically characterised. Variation of the palladium precursor and ligand on aluminium allows kinetic control over reactivity and isolation of intermetallic complexes that contain new Pd-Al and Pd-Pd interactions. These complexes differ by the ratio of H : Al (2 : 1, 1.5 : 1 and 1 : 1) with lower hydride content species forming with dihydrogen loss. A combination of X-ray and neutron diffraction studies have been used to interrogate the structures and provide confidence in the assignment of the number and position of hydride ligands. 27Al MAS NMR spectroscopy and calculations (DFT, QTAIM) have been used to gain an understanding of the dehydrogenation processes. The latter provide evidence for dehydrogenation being accompanied by metal-metal bond formation and an increased negative charge on Al due to the covalency of the new metal-metal bonds. To the best of our knowledge, we present the first structural information for intermediate species in alane dehydrogenation including a rare neutron diffraction study of a palladium-aluminium hydride complex. Furthermore, as part of these studies we have obtained the first SS 27Al NMR data on an aluminium(i) complex. Our findings are relevant to hydrogen storage, materials chemistry and catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA