Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Res ; 98(3): 458-468, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29577367

RESUMO

The need to develop efficient therapies for neurodegenerative diseases is urgent, especially given the increasing percentages of the population living longer, with increasing chances of being afflicted with conditions like Parkinson's disease (PD). A promising curative approach toward PD and other neurodegenerative diseases is the transplantation of stem cells to halt and potentially reverse neuronal degeneration. However, stem cell therapy does not consistently lead to improvement for patients. Using remote stimulation to optogenetically activate transplanted cells, we attempted to improve behavioral outcomes of stem cell transplantation. We generated a neuronal precursor cell line expressing luminopsin 3 (LMO3), a luciferase-channelrhodopsin fusion protein, which responds to the luciferase substrate coelenterazine (CTZ) with emission of blue light that in turn activates the opsin. Neuronal precursor cells were injected bilaterally into the striatum of homozygous aphakia mice, which carry a spontaneous mutation leading to lack of dopaminergic neurons and symptoms of PD. Following transplantation, the cells were stimulated over a period of 10 days by intraventricular injections of CTZ. Mice receiving CTZ demonstrated significantly improved motor skills in a rotarod test compared to mice receiving vehicle. Thus, bioluminescent optogenetic stimulation of transplanted neuronal precursor cells shows promising effects in improving locomotor behavior in the aphakia PD mouse model and encourages further studies to elucidate the mechanisms and long-term outcomes of these beneficial effects.


Assuntos
Proteínas Luminescentes , Atividade Motora , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Optogenética/métodos , Doença de Parkinson/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Imidazóis/administração & dosagem , Substâncias Luminescentes/administração & dosagem , Medições Luminescentes , Proteínas Luminescentes/genética , Proteínas Luminescentes/fisiologia , Masculino , Camundongos Transgênicos , Opsinas/genética , Opsinas/fisiologia , Doença de Parkinson/terapia , Pirazinas/administração & dosagem , Teste de Desempenho do Rota-Rod
2.
Neurophotonics ; 11(2): 021005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450294

RESUMO

Significance: Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). Aim: To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. Approach: We developed novel luciferases optimized for Förster resonance energy transfer when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). Results: A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard) and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. Conclusions: We report a robust new option for achieving multiple modes of control in a single actuator and a promising engineering strategy for continued improvement of BL-OG.

3.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37425735

RESUMO

SIGNIFICANCE: Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). AIM: To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. APPROACH: We developed novel luciferases optimized for Forster resonance energy transfer (FRET) when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). RESULTS: A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard), and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. CONCLUSIONS: We report a robust new option for achieving multiple modes of control in a single actuator, and a promising engineering strategy for continued improvement of BL-OG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA