Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Neurosci ; 18(6): 241-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24678581

RESUMO

OBJECTIVES: Developmental iron deficiency (ID) has been shown to put children at risk for compromised learning and memory capacity, and it has also been shown to impair hippocampus-dependent forms of memory as well as hippocampal synaptic transmission. Catecholamines are known to play a pivotal role in memory consolidation, and studies have demonstrated that perinatal ID alters dopaminergic systems in various brain areas. It is not known, however, whether perinatal ID impairs dopaminergic synaptic plasticity in learning and memory structures such as the hippocampus. The objective of the present study was to examine dopaminergic-mediated synaptic efficacy in the hippocampus of mice subjected to an ID or control (CN) diet. METHODS: The present study used electrophysiological brain slice methods to examine dopaminergic-mediated synaptic efficacy in the hippocampus of mice subjected to an ID or CN diet from postnatal day (P) P0 through P20. Hippocampal brain slices were prepared in young (P26-30) and adult animals (P60-64). Synaptic efficacy was measured in CA1 neurons by examining population spike amplitude. Slices were treated with the dopaminergic agonist SKF-38393. RESULTS: Slices obtained from young and adult CN mice exhibited a long-lasting increase in synaptic efficacy as the result of SKF-38393 perfusion while the young and adult ID slices showed little or no increase. DISCUSSION: The present study demonstrates that postnatal ID produces long-lasting impairments in dopaminergic-dependent synaptic plasticity in the hippocampus. These impairments may play a role in the learning and memory deficits known to result from ID.


Assuntos
Anemia Ferropriva/fisiopatologia , Região CA1 Hipocampal/fisiopatologia , Dopamina/fisiologia , Deficiências de Ferro , Plasticidade Neuronal , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Anemia Ferropriva/sangue , Animais , Dieta , Agonistas de Dopamina/farmacologia , Ferro/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Transmissão Sináptica
2.
Genetics ; 162(4): 1595-604, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12524335

RESUMO

Yme1p, an ATP-dependent protease localized in the mitochondrial inner membrane, is required for the growth of yeast lacking an intact mitochondrial genome. Specific dominant mutations in the genes encoding the alpha- and gamma-subunits of the mitochondrial F(1)F(0)-ATPase suppress the slow-growth phenotype of yeast that simultaneously lack Yme1p and mitochondrial DNA. F(1)F(0)-ATPase activity is reduced in yeast lacking Yme1p and is restored in yme1 strains bearing suppressing mutations in F(1)-ATPase structural genes. Mitochondria isolated from yme1 yeast generated a membrane potential upon the addition of succinate, but unlike mitochondria isolated either from wild-type yeast or from yeast bearing yme1 and a suppressing mutation, were unable to generate a membrane potential upon the addition of ATP. Nuclear-encoded F(0) subunits accumulate in yme1 yeast lacking mitochondrial DNA; however, deletion of genes encoding those subunits did not suppress the requirement of yme1 yeast for intact mitochondrial DNA. In contrast, deletion of INH1, which encodes an inhibitor of the F(1)F(0)-ATPase, partially suppressed the growth defect of yme1 yeast lacking mitochondrial DNA. We conclude that Yme1p is in part responsible for assuring sufficient F(1)F(0)-ATPase activity to generate a membrane potential in mitochondria lacking mitochondrial DNA and propose that Yme1p accomplishes this by catalyzing the turnover of protein inhibitors of the F(1)F(0)-ATPase.


Assuntos
DNA Fúngico/genética , DNA Mitocondrial/genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteases Dependentes de ATP , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Bases , Deleção de Genes , Potenciais da Membrana , Mitocôndrias/metabolismo , Fenótipo , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA