RESUMO
In modern biomedical research, cultivable cell lines are an indispensable tool, and the selection of cell lines that exhibit specific functional profiles is often critical to success. Cellular functional pathways have evolved through the selection of protein intra- and intermolecular interactions collectively referred to as the interactome. In the present work, quantitative in vivo protein cross-linking and mass spectrometry were used to probe large-scale protein interactome differences among three commonly employed human cell lines, namely, HEK293, MCF-7, and HeLa cells. These data illustrated highly reproducible quantitative interactome levels with R2 values larger than 0.8 for all biological replicates. Proteome abundance levels were also measured using data-independent acquisition quantitative proteomics methods. Combining quantitative interactome and proteome information allowed the visualization of cell type-specific interactome changes mediated by proteome level adaptations and independently regulated interactome changes to gain deeper insight into possible drivers of these changes. Among the largest detected alterations in protein interactions and conformations are changes in cytoskeletal proteins, RNA-binding proteins, chromatin remodeling complexes, mitochondrial proteins, and others. Overall, these data demonstrate the utility and reproducibility of quantitative cross-linking to study system-level interactome variations. Moreover, these results illustrate how combined quantitative interactomics and proteomics can provide unique insight into cellular functional landscapes.
RESUMO
Chemical cross-linking combined with mass spectrometry is a technique used to study protein structures and identify protein complexes. Traditionally, chemical cross-linkers contain two reactive groups, allowing them to covalently bond a pair of proximal residues, either within a protein or between two proteins. The output of a cross-linking experiment is a list of interacting site pairs that provide structural constraints for modeling of new structures and complexes. Due to the binary reactive nature of cross-linking reagents, only pairs of interacting sites can be directly observed, and assembly of higher-order structures typically requires prior knowledge of complex composition or iterative docking to produce a putative model. Here, we describe a new tetrameric cross-linker bearing four amine-reactive groups, allowing it to covalently link up to four proteins simultaneously and a real-time instrument method to facilitate the identification of these tetrameric cross-links. We applied this new cross-linker to isolated mitochondria and identified a number of higher-order cross-links in various OXPHOS complexes and ATP synthase, demonstrating its utility in characterizing complex interfaces. We also show that higher-order cross-links can be used to effectively filter models of large protein assemblies generated by using Alphafold. Higher-dimensional cross-linking provides a new avenue for characterizing multiple protein interfaces, even in complex samples such as intact mitochondria.
Assuntos
Aminas , Proteínas , Proteínas/química , Espectrometria de Massas/métodos , Informática , Reagentes de Ligações Cruzadas/químicaRESUMO
Biological systems have evolved to utilize proteins to accomplish nearly all functional roles needed to sustain life. A majority of biological functions occur within the crowded environment inside cells and subcellular compartments where proteins exist in a densely packed complex network of protein-protein interactions. The structural biology field has experienced a renaissance with recent advances in crystallography, NMR, and CryoEM that now produce stunning models of large and complex structures previously unimaginable. Nevertheless, measurements of such structural detail within cellular environments remain elusive. This review will highlight how advances in mass spectrometry, chemical labeling, and informatics capabilities are merging to provide structural insights on proteins, complexes, and networks that exist inside cells. Because of the molecular detection specificity provided by mass spectrometry and proteomics, these approaches provide systems-level information that not only benefits from conventional structural analysis, but also is highly complementary. Although far from comprehensive in their current form, these approaches are currently providing systems structural biology information that can uniquely reveal how conformations and interactions involving many proteins change inside cells with perturbations such as disease, drug treatment, or phenotypic differences. With continued advancements and more widespread adaptation, systems structural biology based on in-cell labeling and mass spectrometry will provide an even greater wealth of structural knowledge.
Assuntos
Proteínas , Proteômica , Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodosRESUMO
The methylation of histidine is a post-translational modification whose function is poorly understood. Methyltransferase histidine protein methyltransferase 1 (Hpm1p) monomethylates H243 in the ribosomal protein Rpl3p and represents the only known histidine methyltransferase in Saccharomyces cerevisiae. Interestingly, the hpm1 deletion strain is highly pleiotropic, with many extraribosomal phenotypes including improved growth rates in alternative carbon sources. Here, we investigate how the loss of histidine methyltransferase Hpm1p results in diverse phenotypes, through use of targeted mass spectrometry (MS), growth assays, quantitative proteomics, and differential crosslinking MS. We confirmed the localization and stoichiometry of the H243 methylation site, found unreported sensitivities of Δhpm1 yeast to nonribosomal stressors, and identified differentially abundant proteins upon hpm1 knockout with clear links to the coordination of sugar metabolism. We adapted the emerging technique of quantitative large-scale stable isotope labeling of amino acids in cell culture crosslinking MS for yeast, which resulted in the identification of 1267 unique in vivo lysine-lysine crosslinks. By reproducibly monitoring over 350 of these in WT and Δhpm1, we detected changes to protein structure or protein-protein interactions in the ribosome, membrane proteins, chromatin, and mitochondria. Importantly, these occurred independently of changes in protein abundance and could explain a number of phenotypes of Δhpm1, not addressed by expression analysis. Further to this, some phenotypes were predicted solely from changes in protein structure or interactions and could be validated by orthogonal techniques. Taken together, these studies reveal a broad role for Hpm1p in yeast and illustrate how crosslinking MS will be an essential tool for understanding complex phenotypes.
Assuntos
Metiltransferases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histidina/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Chemical cross-linking with mass spectrometry provides low-resolution structural information on proteins in cells and tissues. Combined with quantitation, it can identify changes in the interactome between samples, for example, control and drug-treated cells or young and old mice. A difference can originate from protein conformational changes that alter the solvent-accessible distance separating the cross-linked residues. Alternatively, a difference can result from conformational changes localized to the cross-linked residues, for example, altering the solvent exposure or reactivity of those residues or post-translational modifications of the cross-linked peptides. In this manner, cross-linking is sensitive to a variety of protein conformational features. Dead-end peptides are cross-links attached only at one end to a protein with the other terminus being hydrolyzed. As a result, changes in their abundance reflect only conformational changes localized to the attached residue. For this reason, analyzing both quantified cross-links and their corresponding dead-end peptides can help elucidate the likely conformational changes giving rise to observed differences in cross-link abundance. We describe analysis of dead-end peptides in the XLinkDB public cross-link database and, with quantified mitochondrial data isolated from failing heart versus healthy mice, show how a comparison of abundance ratios between cross-links and their corresponding dead-end peptides can be leveraged to reveal possible conformational explanations.
Assuntos
Peptídeos , Proteínas , Animais , Camundongos , Peptídeos/análise , Proteínas/análise , Espectrometria de Massas/métodos , Conformação Proteica , Solventes , Reagentes de Ligações Cruzadas/químicaRESUMO
Recently, several mass spectrometry methods have utilized protein structural stability for the quantitative study of protein-ligand engagement. These protein-denaturation approaches, which include thermal proteome profiling (TPP) and stability of proteins from rates of oxidation (SPROX), evaluate ligand-induced denaturation susceptibility changes with a MS-based readout. The different techniques of bottom-up protein-denaturation methods each have their own advantages and challenges. Here, we report the combination of protein-denaturation principles with quantitative cross-linking mass spectrometry using isobaric quantitative protein interaction reporter technologies. This method enables the evaluation of ligand-induced protein engagement through analysis of cross-link relative ratios across chemical denaturation. As a proof of concept, we found ligand-stabilized cross-linked lysine pairs in well-studied bovine serum albumin and ligand bilirubin. These links map to the known binding sites Sudlow Site I and subdomain IB. We propose that protein denaturation and qXL-MS can be combined with similar peptide-level quantification approaches, like SPROX, to increase the coverage information profiled for facilitating protein-ligand engagement efforts.
Assuntos
Peptídeos , Proteínas , Desnaturação Proteica , Ligantes , Proteínas/química , Espectrometria de Massas/métodos , Reagentes de Ligações Cruzadas/químicaRESUMO
The set of all intra- and intermolecular interactions, collectively known as the interactome, is currently an unmet challenge for any analytical method, but if measured, could provide unparalleled insight on molecular function in living systems. Developments and applications of chemical cross-linking and high-performance mass spectrometry technologies are beginning to reveal details on how proteins interact in cells and how protein conformations and interactions inside cells change with phenotype or during drug treatment or other perturbations. A major contributor to these advances is Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) technology and its implementation with accurate mass measurements on cross-linked peptide-pair precursor and fragment ions to enable improved identification methods. However, these applications place increased demands on mass spectrometer performance in terms of high-resolution spectral acquisition rates for on-line MSn experiments. Moreover, FT-ICR-MS also offers unique opportunities to develop and implement parallel ICR cells for multiplexed signal acquisition and the potential to greatly advance accurate mass acquisition rates for interactome studies. This review highlights our efforts to exploit accurate mass FT-ICR-MS technologies with chemical cross-linking and developments being pursued to realize parallel MS array capabilities that will further advance visualization of the interactome.
Assuntos
Ciclotrons , Proteínas , Análise de Fourier , Íons/química , Espectrometria de Massas/métodosRESUMO
RATIONALE: Hybrid mass spectrometers combine multiple mass analyzers to achieve optimal performance in terms of tandem mass spectrometry, high mass resolving power, and mass measurement accuracy for studying highly complex samples. As a result, the need for transport, trapping, and control of ion kinetic energies is critical for the successful integration of multiple mass analyzers and hybrid instrument operation. In addition, transportation of ion populations between two physically distinct locations can result in time-of-flight (TOF) discrimination against ions with widely disparate m/z values, compromising full mass spectral performance. In this work, we demonstrated a new ion guide, referred to as a planar quadrupole (PQ) ion guide, composed of two parallel printed circuit boards (PCB) that allow radiofrequency (RF) and direct current (DC) voltages to be combined to enable both axial transport and trapping of ion populations in the ultrahigh vacuum region of the mass spectrometer. As compared with a conventional multipole ion guide, the PQ ion guide showed comparable performance in ion m/z values, signal-to-noise, and intensity and effectively reduced mass discrimination caused by TOF effects. METHODS: A PQ device was developed with two PCBs and simulated with SIMION 8.1. Electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry instrumentation were used for the testing of PQ performance. RESULTS: .In this work, we demonstrated a planar quadrupole (PQ) ion guide composed of two parallel PCB plates. The PQ enables both axial ion transport and trapping of ion populations throughout the ion transfer process from a LTQ to an ICR cell. As compared with a conventional multipole ion guide, the PQ showed comparable ion transmission efficiency and effectively reduced mass discrimination caused by TOF effects. CONCLUSIONS: The PQ is a simple design that can be implemented for ion transmission and trapping on virtually any mass spectrometer.
RESUMO
Mitochondrial dysfunction underlies the etiology of a broad spectrum of diseases including heart disease, cancer, neurodegenerative diseases, and the general aging process. Therapeutics that restore healthy mitochondrial function hold promise for treatment of these conditions. The synthetic tetrapeptide, elamipretide (SS-31), improves mitochondrial function, but mechanistic details of its pharmacological effects are unknown. Reportedly, SS-31 primarily interacts with the phospholipid cardiolipin in the inner mitochondrial membrane. Here we utilize chemical cross-linking with mass spectrometry to identify protein interactors of SS-31 in mitochondria. The SS-31-interacting proteins, all known cardiolipin binders, fall into two groups, those involved in ATP production through the oxidative phosphorylation pathway and those involved in 2-oxoglutarate metabolic processes. Residues cross-linked with SS-31 reveal binding regions that in many cases, are proximal to cardiolipin-protein interacting regions. These results offer a glimpse of the protein interaction landscape of SS-31 and provide mechanistic insight relevant to SS-31 mitochondrial therapy.
Assuntos
Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Oligopeptídeos/farmacologia , Envelhecimento , Animais , Masculino , Camundongos , Modelos Químicos , Simulação de Dinâmica Molecular , Oligopeptídeos/metabolismo , Ligação ProteicaRESUMO
Hospital environments are excellent reservoirs for the opportunistic pathogen Acinetobacter baumannii in part because it is exceptionally tolerant to desiccation. We found that relative to other A. baumannii strains, the virulent strain AB5075 was strikingly desiccation resistant at 2% relative humidity (RH), suggesting that it is a good model for studies of the functional basis of this trait. Consistent with results from other A. baumannii strains at 40% RH, we found the global posttranscriptional regulator CsrA to be critically important for desiccation tolerance of AB5075 at 2% RH. Proteomics experiments identified proteins that were differentially present in wild-type and csrA mutant cells. Subsequent analysis of mutants in genes encoding some of these proteins revealed six genes that were required for wild-type levels of desiccation tolerance. These include genes for catalase, a universal stress protein, a hypothetical protein, and a biofilm-associated protein. Two genes of unknown function had very strong desiccation phenotypes, with one of the two genes predicting an intrinsically disordered protein (IDP) that binds to DNA. Intrinsically disordered proteins are widespread in eukaryotes but less so in prokaryotes. Our results suggest there are new mechanisms underlying desiccation tolerance in bacteria and identify several key functions involved. IMPORTANCE Acinetobacter baumannii is found in terrestrial environments but can cause nosocomial infections in very sick patients. A factor that contributes to the prevalence of A. baumannii in hospital settings is that it is intrinsically resistant to dry conditions. Here, we established the virulent strain A. baumannii AB5075 as a model for studies of desiccation tolerance at very low relative humidity. Our results show that this trait depends on two proteins of unknown function, one of which is predicted to be an intrinsically disordered protein. This category of protein is critical for the small animals named tardigrades to survive desiccation. Our results suggest that A. baumannii may have novel strategies to survive desiccation that have not previously been seen in bacteria.
Assuntos
Acinetobacter baumannii , Proteínas Intrinsicamente Desordenadas , Acinetobacter baumannii/metabolismo , Animais , Biofilmes , Dessecação , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , ProteômicaRESUMO
Chemical cross-linking of proteins in complex samples, cells, or even tissues is emerging to provide unique structural information on proteins and complexes that exist within native or nativelike environments. The public database XLinkDB automatically maps cross-links to available structures based on sequence homology. Structures most likely to reflect protein conformations in the cross-linked sample are routinely identified by having cross-linked residues separated by Euclidean distances within the maximum span of the applied cross-linker. Solvent accessible surface distance (SASD), which considers the accessibility of the cross-linked residues and the path connecting them, is a better predictor of consistency than the Euclidean distance. However, SASDs of structures are not publicly available, and their calculation is computationally intensive. Here, we describe in XLinkDB version 4.0 the automatic calculation of SASDs using Jwalk for all cross-links mapped to structures, both with and without regard to ligands, and derive empirical maximum SASD spans for BDP-NHP and DSSO cross-linkers of 51 and 43 Å, respectively. We document ligands proximal to cross-links in structures and demonstrate how SASDs can be used to help infer sample protein conformations and ligand occupancy, highlighting cross-links sensitive to ADP binding in mitochondria isolated from HEK293 cells.
Assuntos
Proteínas , Reagentes de Ligações Cruzadas/química , Células HEK293 , Humanos , Ligantes , Conformação Proteica , Proteínas/químicaRESUMO
The study of protein structures and interactions is critical to understand their function. Chemical cross-linking of proteins with mass spectrometry (XL-MS) is a rapidly developing structural biology technique able to provide valuable insight into protein conformations and interactions, even as they exist within their native cellular environment. Quantitative analysis of cross-links can reveal protein conformational and interaction changes that occur as a result of altered biological states, environmental conditions, or pharmacological perturbations. Our laboratory recently developed an isobaric quantitative protein interaction reporter (iqPIR) cross-linking strategy for comparative interactome studies. This strategy relies on isotope encoded chemical cross-linkers that have the same molecular mass yet produce unique and specific isotope signatures upon fragmentation in the mass spectrometer which can be used for quantitative analysis of cross-linked peptides. The initial set of iqPIR molecules allowed for binary comparisons. Here, we describe the in vivo application of an extended set of six iqPIR reagents (6-plex iqPIR), allowing multiplexed quantitative interactome analysis of up to six biological samples in a single LC-MS acquisition. Multiplexed iqPIR is demonstrated on MCF-7 breast cancer cells treated with five different Hsp90 inhibitors revealing large scale protein conformational and interaction changes specific to the molecular class of the inhibitors.
Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Reagentes de Ligações Cruzadas/química , Feminino , Humanos , Espectrometria de Massas/métodos , Peptídeos/química , Conformação Proteica , Proteínas/análiseRESUMO
XLinkDB is a fast-expanding public database now storing more than 100â¯000 distinct identified cross-linked protein residue pairs acquired by chemical cross-linking with mass spectrometry from samples of 12 species (J. Proteome Res.2019, 18 (2), 753-758). Mapping identified cross-links to protein structures, when available, provides valuable guidance on protein conformations detected in the cross-linked samples. As more and more structures become available in the Protein Data Bank (Nucleic Acids Res.2000, 28 (1), 235-242), we sought to leverage their utility for cross-link studies by automatically mapping identified cross-links to structures based on sequence homology of the cross-linked proteins with those within structures. This enables use of structures derived from organisms different from those of samples, including large multiprotein complexes and complexes in alternative states. We demonstrate utility of mapping to orthologous structures, highlighting a cross-link between two subunits of mouse mitochondrial Complex I that was mapped to 15 structures derived from five mammals, its distances there of 16.2 ± 0.4 Å indicating strong conservation of the protein interaction. We also show how multimeric structures enable reassessment of cross-links presumed to be intraprotein as potentially homodimeric interprotein in origin.
Assuntos
Mapeamento de Interação de Proteínas , Proteoma , Animais , Reagentes de Ligações Cruzadas , Bases de Dados de Proteínas , Espectrometria de Massas , Camundongos , Conformação ProteicaRESUMO
Chemical cross-linking with mass spectrometry (XL-MS) has emerged as a useful technique for interrogating protein structures and interactions. When combined with quantitative proteomics strategies, protein conformational and interaction dynamics can be probed. Quantitative XL-MS has been demonstrated with the use of stable isotopes incorporated metabolically or into the cross-linker molecules. Isotope-labeled cross-linkers have primarily utilized deuterium and rely on MS1-based quantitation of precursor ion extracted ion chromatograms. Recently the development and application of isobaric quantitative protein interaction reporter (iqPIR) cross-linkers were reported, which utilize 13C and 15N isotope labels. Quantitation is accomplished using relative fragment ion isotope abundances in tandem mass spectra. Here we describe the synthesis and initial evaluation of a multiplexed set of iqPIR molecules, allowing for up to six cross-linked samples to be quantified simultaneously. To analyze data for such cross-linkers, the two-channel mode of iqPIR quantitative analysis was adapted to accommodate any number of channels with defined ion isotope peak mass offsets. The summed ion peak intensities in the overlapping channel isotope envelopes are apportioned among the channels to minimize the difference with respect to the predicted ion isotope envelopes. The result is accurate and reproducible relative quantitation enabling direct comparison among six differentially labeled cross-linked samples. The approach described here is generally extensible for the iqPIR strategy, accommodating future iqPIR reagent design, and enables large-scale in vivo quantitative XL-MS investigation of the interactome.
Assuntos
Proteômica , TecnologiaRESUMO
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with liquid chromatography (LC) is a powerful combination useful in many research areas due to the utility of high mass resolving power and mass measurement accuracy for studying highly complex samples. Ideally, every analyte in a complex sample can be subjected to accurate mass MS/MS analysis to aid in identification. FT-ICR MS can provide high mass resolving power and mass accuracy at the cost of long data acquisition periods, reducing the number of spectra that can be acquired per unit time. Frequency multiple signal acquisition has long been realized as an attractive method to obtain high mass resolving power and mass accuracy with shorter data acquisition periods. However, one of the limitations associated with frequency multiple signal acquisition is reduced signal intensity as compared to a traditional dipole detector. In this study, we demonstrated the use of a novel ICR cell to improve frequency multiple signal intensity and investigated the potential use of frequency multiple acquisition for proteome measurements. This novel ICR cell containing both dipole and frequency multiple detection electrodes was installed on a 7T FT-ICR MS coupled to an LC system. Tryptic digests of HeLa cell lysates were analyzed using dipole and frequency multiple detectors by holding either the mass resolving power or signal acquisition time constant. Compared to dipole detection, second frequency multiple detection yielded 36% or 45% more unique identified peptides from HeLa cell lysates at twice the scan rate or twice the mass resolving power, respectively. These results indicate that frequency multiple signal acquisition with either the same resolving power or the same signal acquisition duration as used with dipole signals can produce a significant increase in the number of peptides identified in complex proteome samples.
RESUMO
Presymptomatic detection of citrus trees infected with Candidatus Liberibacter asiaticus (CLas), the bacterial pathogen associated with Huanglongbing (HLB; citrus greening disease), is critical to controlling the spread of the disease. To test whether infected citrus trees produce systemic signals that may be used for indirect disease detection, lemon (Citrus limon) plants were graft-inoculated with either CLas-infected or control (CLas-) budwood, and leaf samples were longitudinally collected over 46 weeks and analyzed for plant changes associated with CLas infection. RNA, protein, and metabolite samples extracted from leaves were analyzed using RNA-Seq, mass spectrometry, and 1H NMR spectroscopy, respectively. Significant differences in specific transcripts, proteins, and metabolites were observed between CLas-infected and control plants as early as 2 weeks post graft (wpg). The most dramatic differences between the transcriptome and proteome of CLas-infected and control plants were observed at 10 wpg, including coordinated increases in transcripts and proteins of citrus orthologs of known plant defense genes. This integrated approach to quantifying plant molecular changes in leaves of CLas-infected plants supports the development of diagnostic technology for presymptomatic or early disease detection as part of efforts to control the spread of HLB into uninfected citrus groves.
Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Liberibacter , Doenças das Plantas/genética , Proteômica , Rhizobiaceae/genética , TranscriptomaRESUMO
"Candidatus Liberibacter asiaticus" (CLas) is the bacterium associated with the citrus disease Huanglongbing (HLB). Current CLas detection methods are unreliable during presymptomatic infection, and understanding CLas pathogenicity to help develop new detection techniques is challenging because CLas has yet to be isolated in pure culture. To understand how CLas affects citrus metabolism and whether infected plants produce systemic signals that can be used to develop improved detection techniques, leaves from Washington Navel orange (Citrus sinensis (L.) Osbeck) plants were graft-inoculated with CLas and longitudinally studied using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry), and metabolomics (proton nuclear magnetic resonance). Photosynthesis gene expression and protein levels were lower in infected plants compared to controls during late infection, and lower levels of photosynthesis proteins were identified as early as 8 weeks post-grafting. These changes coordinated with higher sugar concentrations, which have been shown to accumulate during HLB. Cell wall modification and degradation gene expression and proteins were higher in infected plants during late infection. Changes in gene expression and proteins related to plant defense were observed in infected plants as early as 8 weeks post-grafting. These results reveal coordinated changes in greenhouse navel leaves during CLas infection at the transcript, protein, and metabolite levels, which can inform of biomarkers of early infection.
Assuntos
Citrus sinensis , Citrus , Hemípteros , Rhizobiaceae , Animais , Citrus sinensis/genética , Liberibacter , Metabolômica , Doenças das Plantas/genética , Proteômica , Rhizobiaceae/genética , TranscriptomaRESUMO
Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.
Assuntos
Sistema Cardiovascular , Educação/métodos , Insuficiência Cardíaca/terapia , Mitocôndrias/fisiologia , National Heart, Lung, and Blood Institute (U.S.) , Relatório de Pesquisa , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Sistema Cardiovascular/patologia , Educação/tendências , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Humanos , National Heart, Lung, and Blood Institute (U.S.)/tendências , Relatório de Pesquisa/tendências , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências , Estados Unidos/epidemiologiaRESUMO
Chemical cross-linking with mass spectrometry (XL-MS) has emerged as a useful tool for the large-scale study of protein structures and interactions from complex biological samples including intact cells and tissues. Quantitative XL-MS (qXL-MS) provides unique information on protein conformational and interaction changes resulting from perturbations such as drug treatment and disease state. Previous qXL-MS studies relied on the incorporation of stable isotopes into the cross-linker (primarily deuterium) or metabolic labeling with SILAC. Here, we introduce isobaric quantitative protein interaction reporter (iqPIR) technology which utilizes stable isotopes selectively incorporated into the cross-linker design, allowing for isobaric cross-linked peptide pairs originating from different samples to display distinct quantitative isotope signatures in tandem mass spectra. This enables improved quantitation of cross-linked peptide levels from proteome-wide samples because of the reduced complexity of tandem mass spectra relative to MS1 spectra. In addition, because of the isotope incorporation in the reporter and the residual components of the cross-linker that remain on released peptides, each fragmentation spectrum can offer multiple independent opportunities and, therefore, improved confidence for quantitative assessment of the cross-linker pair level. Finally, in addition to providing information on solvent accessibility of lysine sites, dead end iqPIR cross-linked products can provide protein abundance and/or lysine site modification level information all from a single in vivo cross-linking experiment.
Assuntos
Reagentes de Ligações Cruzadas/química , Peptídeos/análise , Proteoma/análise , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Técnicas Biossensoriais , Cromatografia Líquida de Alta Pressão , Células HeLa , Humanos , Marcação por Isótopo , Lisina/química , Modelos Químicos , Conformação Molecular , Proteômica , Solventes/química , Espectrometria de Massas em TandemRESUMO
MOTIVATION: Peptides crosslinked with cleavable chemical crosslinkers are identified with mass spectrometry by independent database search of spectra associated with the two linked peptides. A major challenge is to combine together the evidence of the two peptides into an overall assessment of the two-peptide crosslink. RESULTS: Here, we describe software that models crosslink specific information to automatically validate XL-MS cleavable peptide crosslinks. Using a dataset of crosslinked protein mixtures, we demonstrate that it computes accurate and highly discriminating probabilities, enabling as many as 75% more identifications than was previously possible using only search scores and a predictable false discovery rate. AVAILABILITY AND IMPLEMENTATION: XLinkProphet software is freely available on the web at http://brucelab.gs.washington.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.