Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Neurol ; 12: 612293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643198

RESUMO

Introduction: High frequency oscillations (HFO) are promising biomarkers of epileptic tissue. While group analysis suggested a correlation between surgical removal of HFO generating tissue and seizure free outcome, HFO could not predict seizure outcome on an individual patient level. One possible explanation is the lack of differentiation between physiological and epileptic HFO. In the mesio-temporal lobe, a proportion of physiological ripples can be identified by their association with scalp sleep spindles. Spike associated ripples in contrast can be considered epileptic. This study investigated whether categorizing ripples by the co-occurrence with sleep spindles or spikes improves outcome prediction after surgery. Additionally, it aimed to investigate whether spindle-ripple association is limited to the mesio-temporal lobe structures or visible across the whole brain. Methods: We retrospectively analyzed EEG of 31 patients with chronic intracranial EEG. Sleep spindles in scalp EEG and ripples and epileptic spikes in iEEG were automatically detected. Three ripple subtypes were obtained: SpindleR, Non-SpindleR, and SpikeR. Rate ratios between removed and non-removed brain areas were calculated. We compared the distinct ripple subtypes and their rates in different brain regions, inside and outside seizure onset areas and between patients with good and poor seizure outcome. Results: SpindleR were found across all brain regions. SpikeR had significantly higher rates in the SOZ than in Non-SOZ channels. A significant positive correlation between removal of ripple-events and good outcome was found for the mixed ripple group (rs = 0.43, p = 0.017) and for ripples not associated with spindles (rs=0.40, p = 0.044). Also, a significantly high proportion of spikes associated with ripples were removed in seizure free patients (p = 0.036). Discussion: SpindleR are found in mesio-temporal and neocortical structures, indicating that ripple-spindle-coupling might have functional importance beyond mesio-temporal structures. Overall, the proportion of SpindleR was low and separating spindle and spike associated ripples did not improve outcome prediction in our patient group. SpindleR analysis therefore can be a tool to identify physiological events but needs to be used in combination with other methods to have clinical relevance.

2.
J Neural Eng ; 17(1): 016030, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31530748

RESUMO

OBJECTIVE: High-frequency-oscillations (HFO) and interictal-epileptic-spikes (IES) are spatial biomarkers of the epileptogenic-zone. Those HFO spatially and temporally co-occurring with IES (IES-HFO) are potentially superior biomarkers, their use is however challenged by the difficulty in detecting the low amplitude HFO riding the high-amplitude and steep-waveform of IES. We aim to develop an automatic HFO detector with an improved performance with respect to current methods and that also correctly distinguishes IES-HFO from IES occurring in isolation (isol-IES). We also aim to validate the biomarker-value of the automatic detections by utilizing them to localize a surrogate of the epileptogenic-zone. APPROACH: We developed automatic-detectors of HFO-Ripples (80-250 Hz), HFO-FastRipples (250-500 Hz) and IES based on kernelized support-vector-machines (SVM). The training of the HFO-detectors was based on visually marked HFO and the parameter optimization during this training-process promoted the correct discernment between IES-HFO and isol-IES. Both HFO-detectors were benchmarked against other published detectors using databases with both visually marked and simulated gold-standards. The IES-detector was trained with a publicly available simulated database and tested against both simulated and visually marked gold-standards. To validate the detections' biomarker-value, the detectors were run on intracranial-EEGs from 8 patients and each with durations of 2-3 days, the detections' cumulated per-channel occurrence-rate was then used to predict the seizure-onset-zone as a surrogate of the epileptogenic-zone. MAIN RESULTS: The HFO-detectors obtained at least 21 more F1-score points than previously published algorithms at the lowest signal-to-noise-ratio. The success achieved when discerning between IES-HFO and isol-IES was comparable to that of other published algorithms. The automatically detected IES-HFO and IES-Ripples showed the best biomarker-value to localize the epileptogenic-zone. SIGNIFICANCE: The developed detectors are publicly available and provide a reliable tool to further study HFO, IES-HFO and their value as biomarkers. The putative higher biomarker value from IES-HFO was validated on automatically-detected, long-term data.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Bases de Dados Factuais/normas , Epilepsia/fisiopatologia , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Eletroencefalografia/normas , Epilepsia/diagnóstico , Humanos , Reprodutibilidade dos Testes
3.
Int J Neural Syst ; 27(7): 1750011, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28043201

RESUMO

High frequency oscillations (HFOs, 80-500[Formula: see text]Hz) serve as novel electroencephalography (EEG) markers of epileptic tissue. The differentiation of physiological and epileptic HFO is an important challenge and is complicated by the fact that both types are generated in mesiotemporal structures. This study aimed to identify oscillation features that serve to distinguish physiological ripples associated with sleep spindles and epileptic ripples. We studied 19 patients with chronic intracranial EEG(iEEG) with mesiotemporal implantation and simultaneous scalp EEG. Sleep spindles, ripples and spikes were visually marked during nonrapid eye movement sleep stage 2. Ripples co-occurring with spikes and in seizure onset zone (SOZ) channels but outside of spindles were considered epileptic. The SOZ is defined by the origin of clinical seizures in iEEG. Ripples co-occurring with spindles were considered as models for physiological ripples. A correlation analysis showed a significant ripple amplitude peak - spindle trough - coupling, thus proving their physiological linkage. Epileptic ripples showed significantly higher values in all amplitude features than spindle ripples. All amplitude features and peaks per sample length showed a predictive value for the classification between model physiological ripples and epileptic ripples but indicate that the specificity is not sufficient for a reliable discrimination of single ripple events. The presented results suggest that a secure identification of epileptic ripples may be available to help identify the epileptic focus in the future.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Sono/fisiologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Eletrodos Implantados , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Estatísticas não Paramétricas , Adulto Jovem
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 5501-5504, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269503

RESUMO

High Frequency Oscillations (HFOs) have been described as biomarkers of epileptogenic tissue; however their pathological/physiological classification poses a challenge to their predictive power. For the population of ripples co-occurring with sleep spindles, those ripples improving the antiparallel correlation of ripple-peaks and sleep spindle-troughs were classified as coupled-ripples and the rest as uncoupled-ripples. For the same population of ripples two reference groups called in-SOZ and non-SOZ were formed according to the ripples' location inside or outside the seizure onset zone (SOZ). Nine patients were analyzed and their formed groups were compared using three amplitude, three waveform and three frequency features. The coupled-ripples group showed similar feature values to the non-SOZ group. The correlation based classification approach shows potential to verify the SOZ and predict alterations in the memory consolidation process.


Assuntos
Eletroencefalografia , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Processamento de Sinais Assistido por Computador , Biomarcadores , Humanos , Convulsões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA