Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Mol Life Sci ; 79(11): 549, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241929

RESUMO

Cell fusion of female and male gametes is the climax of sexual reproduction. In many organisms, the Hapless 2 (HAP2) family of proteins play a critical role in gamete fusion. We find that Plasmodium falciparum, the causative agent of human malaria, expresses two HAP2 proteins: PfHAP2 and PfHAP2p. These proteins are present in stage V gametocytes and localize throughout the flagellum of male gametes. Gene deletion analysis and genetic crosses show that PfHAP2 and PfHAP2p individually are essential for male fertility and thereby, parasite transmission to the mosquito. Using a cell fusion assay, we demonstrate that PfHAP2 and PfHAP2p are both authentic plasma membrane fusogens. Our results establish nonredundant essential roles for PfHAP2 and PfHAP2p in mediating gamete fusion in Plasmodium and suggest avenues in the design of novel strategies to prevent malaria parasite transmission from humans to mosquitoes.


Assuntos
Malária , Parasitos , Animais , Membrana Celular , Feminino , Fertilização , Células Germinativas/metabolismo , Humanos , Masculino , Plasmodium falciparum/genética
2.
BMC Evol Biol ; 20(1): 67, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513118

RESUMO

BACKGROUND: Cysteine-RIch Secretory Proteins (CRISP) are expressed in the reproductive tract of mammalian males and are involved in fertilization and related processes. Due to their important role in sperm performance and sperm-egg interaction, these genes are likely to be exposed to strong selective pressures, including postcopulatory sexual selection and/or male-female coevolution. We here perform a comparative evolutionary analysis of Crisp genes in mammals. Currently, the nomenclature of CRISP genes is confusing, as a consequence of discrepancies between assignments of orthologs, particularly due to numbering of CRISP genes. This may generate problems when performing comparative evolutionary analyses of mammalian clades and species. To avoid such problems, we first carried out a study of possible orthologous relationships and putative origins of the known CRISP gene sequences. Furthermore, and with the aim to facilitate analyses, we here propose a different nomenclature for CRISP genes (EVAC1-4, "EVolutionarily-analyzed CRISP") to be used in an evolutionary context. RESULTS: We found differing selective pressures among Crisp genes. CRISP1/4 (EVAC1) and CRISP2 (EVAC2) orthologs are found across eutherian mammals and seem to be conserved in general, but show signs of positive selection in primate CRISP1/4 (EVAC1). Rodent Crisp1 (Evac3a) seems to evolve under a comparatively more relaxed constraint with positive selection on codon sites. Finally, murine Crisp3 (Evac4), which appears to be specific to the genus Mus, shows signs of possible positive selection. We further provide evidence for sexual selection on the sequence of one of these genes (Crisp1/4) that, unlike others, is thought to be exclusively expressed in male reproductive tissues. CONCLUSIONS: We found differing selective pressures among CRISP genes and sexual selection as a contributing factor in CRISP1/4 gene sequence evolution. Our evolutionary analysis of this unique set of genes contributes to a better understanding of Crisp function in particular and the influence of sexual selection on reproductive mechanisms in general.


Assuntos
Evolução Molecular , Mamíferos/genética , Proteínas de Plasma Seminal/genética , Animais , Feminino , Masculino , Camundongos , Reprodução/genética , Espermatozoides/metabolismo
3.
Reproduction ; 156(2): 163-172, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29866768

RESUMO

Fibroblast growth factor 2 (FGF2) and its receptors (FGFRs) have been described in several tissues, where they regulate cellular proliferation, differentiation, motility and apoptosis. Although FGF2/FGFRs expression in the male reproductive tract has been reported, there is scarce evidence on their presence in the female reproductive tract and their involvement in the modulation of sperm function. Therefore, the objective of this study was to determine the expression of FGF2 in the female reproductive tract and to assess the role of the FGF2/FGFRs system in the regulation of sperm physiology using the murine model. FGF2 was detected in uterus and oviduct protein extracts, and it was immunolocalized in epithelial cells of the uterus, isthmus and ampulla, as well as in the cumulus oophorus-oocyte complex. The receptors FGFR1, FGFR2, FGFR3 and FGFR4 were immunodetected in the flagellum and acrosomal region of sperm recovered from the cauda epididymis. Analysis of testis sections showed the expression of FGFRs in germ cells at different stages of the spermatogenesis, suggesting the testicular origin of the sperm FGFRs. Sperm incubation with recombinant FGF2 (rFGF2) led to increased sperm motility and velocity and to enhanced intracellular Ca2+ levels and acrosomal loss compared to the control. In conclusion, this study shows that FGF2 is expressed in tissues of the female reproductive tract. Also, the fact that functional FGFRs are present in mouse sperm and that rFGF2 affects sperm motility and acrosomal exocytosis, suggests the involvement of this system in the in vivo regulation of sperm function.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Genitália Feminina/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Espermatozoides/fisiologia , Animais , Feminino , Masculino , Camundongos , Testículo/metabolismo
4.
FASEB J ; 29(10): 4189-200, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26136479

RESUMO

Lectin-glycan recognition systems play central roles in many physiologic and pathologic processes. We identified a role for galectin-1 (Gal-1), a highly conserved glycan-binding protein, in the control of sperm function. We found that Gal-1 is expressed in the epididymis and associates with sperm during epididymal maturation. Exposure of sperm to Gal-1 resulted in glycan-dependent modulation of the acrosome reaction (AR), a key event in the fertilization process. Gal-1-deficient (Lgals1(-/-)) mice revealed the essential contribution of this lectin for full sperm fertilizing ability both in vitro and in vivo. Mechanistically, Lgals1(-/-) sperm exhibited defects in their ability to develop hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, Lgals1(-/-) sperm showed a decreased ability to control cell volume and to undergo progesterone-induced AR, phenotypes that were rescued by exposure of the cells to recombinant Gal-1. Interestingly, the AR defect was associated with a deficiency in sperm membrane potential hyperpolarization. Our study highlights the relevance of the Gal-1-glycan axis in sperm function with critical implications in mammalian reproductive biology.


Assuntos
Membrana Celular/fisiologia , Galectina 1/metabolismo , Polissacarídeos/metabolismo , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Reação Acrossômica/efeitos dos fármacos , Reação Acrossômica/genética , Reação Acrossômica/fisiologia , Animais , Membrana Celular/metabolismo , Epididimo/citologia , Epididimo/metabolismo , Feminino , Fertilização/efeitos dos fármacos , Galectina 1/genética , Galectina 1/farmacologia , Expressão Gênica , Immunoblotting , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Progesterona/metabolismo , Progesterona/farmacologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Testículo/citologia , Testículo/metabolismo
5.
Elife ; 132024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265078

RESUMO

The fusion of mammalian gametes requires the interaction between IZUMO1 on the sperm and JUNO on the oocyte. We have recently shown that ectopic expression of mouse IZUMO1 induces cell-cell fusion and that sperm can fuse to fibroblasts expressing JUNO. Here, we found that the incubation of mouse sperm with hamster fibroblasts or human epithelial cells in culture induces the fusion between these somatic cells and the formation of syncytia, a pattern previously observed with some animal viruses. This sperm-induced cell-cell fusion requires a species-matching JUNO on both fusing cells, can be blocked by an antibody against IZUMO1, and does not rely on the synthesis of new proteins. The fusion is dependent on the sperm's fusogenic capacity, making this a reliable, fast, and simple method for predicting sperm function during the diagnosis of male infertility.


Assuntos
Fertilização , Receptores de Superfície Celular , Cricetinae , Masculino , Humanos , Animais , Camundongos , Receptores de Superfície Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Interações Espermatozoide-Óvulo , Fusão Celular , Sêmen/metabolismo , Espermatozoides/metabolismo , Imunoglobulinas/metabolismo , Mamíferos/metabolismo , Anticorpos/metabolismo
6.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36394541

RESUMO

Mammalian sperm-egg adhesion depends on the trans-interaction between the sperm-specific type I glycoprotein IZUMO1 and its oocyte-specific GPI-anchored receptor JUNO. However, the mechanisms and proteins (fusogens) that mediate the following step of gamete fusion remain unknown. Using live imaging and content mixing assays in a heterologous system and structure-guided mutagenesis, we unveil an unexpected function for IZUMO1 in cell-to-cell fusion. We show that IZUMO1 alone is sufficient to induce fusion, and that this ability is retained in a mutant unable to bind JUNO. On the other hand, a triple mutation in exposed aromatic residues prevents this fusogenic activity without impairing JUNO interaction. Our findings suggest a second function for IZUMO1 as a unilateral mouse gamete fusogen.


Assuntos
Imunoglobulinas , Proteínas de Membrana , Receptores de Superfície Celular , Interações Espermatozoide-Óvulo , Animais , Masculino , Camundongos , Fusão Celular , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo
7.
Nat Commun ; 13(1): 3880, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794124

RESUMO

Sexual reproduction consists of genome reduction by meiosis and subsequent gamete fusion. The presence of genes homologous to eukaryotic meiotic genes in archaea and bacteria suggests that DNA repair mechanisms evolved towards meiotic recombination. However, fusogenic proteins resembling those found in gamete fusion in eukaryotes have so far not been found in prokaryotes. Here, we identify archaeal proteins that are homologs of fusexins, a superfamily of fusogens that mediate eukaryotic gamete and somatic cell fusion, as well as virus entry. The crystal structure of a trimeric archaeal fusexin (Fusexin1 or Fsx1) reveals an archetypical fusexin architecture with unique features such as a six-helix bundle and an additional globular domain. Ectopically expressed Fusexin1 can fuse mammalian cells, and this process involves the additional globular domain and a conserved fusion loop. Furthermore, archaeal fusexin genes are found within integrated mobile elements, suggesting potential roles in cell-cell fusion and gene exchange in archaea, as well as different scenarios for the evolutionary history of fusexins.


Assuntos
Archaea , Eucariotos , Animais , Archaea/genética , Fusão Celular , Eucariotos/genética , Células Eucarióticas , Células Germinativas/metabolismo , Mamíferos
8.
Front Cell Dev Biol ; 9: 824024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083224

RESUMO

Gamete fusion is the climax of fertilization in all sexually reproductive organisms, from unicellular fungi to humans. Similarly to other cell-cell fusion events, gamete fusion is mediated by specialized proteins, named fusogens, that overcome the energetic barriers during this process. In recent years, HAPLESS 2/GENERATIVE CELL-SPECIFIC 1 (HAP2/GCS1) was identified as the fusogen mediating sperm-egg fusion in flowering plants and protists, being both essential and sufficient for the membrane merger in some species. The identification of HAP2/GCS1 in invertebrates, opens the possibility that a similar fusogen may be used in vertebrate fertilization. HAP2/GCS1 proteins share a similar structure with two distinct families of exoplasmic fusogens: the somatic Fusion Family (FF) proteins discovered in nematodes, and class II viral glycoproteins (e.g., rubella and dengue viruses). Altogether, these fusogens form the Fusexin superfamily. While some attributes are shared among fusexins, for example the overall structure and the possibility of assembly into trimers, some other characteristics seem to be specific, such as the presence or not of hydrophobic loops or helices at the distal tip of the protein. Intriguingly, HAP2/GCS1 or other fusexins have neither been identified in vertebrates nor in fungi, raising the question of whether these genes were lost during evolution and were replaced by other fusion machinery or a significant divergence makes their identification difficult. Here, we discuss the biology of HAP2/GCS1, its involvement in gamete fusion and the structural, mechanistic and evolutionary relationships with other fusexins.

9.
J Cell Biol ; 218(5): 1436-1451, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936162

RESUMO

Cell-cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In this review, we discuss the properties and diversity of the known proteins mediating cell-cell fusion and highlight their different working mechanisms in various contexts.


Assuntos
Fusão Celular , Membrana Celular/metabolismo , Fusão de Membrana , Proteínas de Membrana/metabolismo , Animais , Humanos
11.
Asian J Androl ; 17(5): 711-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26112483

RESUMO

Mammalian fertilization is a complex process that involves different steps of interaction between the male and female gametes. In spite of its relevance, the molecular mechanisms underlying this process still remain to be elucidated. The present review describes the contribution of our laboratory to the understanding of mammalian fertilization using Cysteine-RIch Secretory Proteins (CRISP) as model molecules. Substantial evidence obtained from in vitro assays and knockout models shows that epididymal CRISP1 associates with the sperm surface with two different affinities during maturation, and participates in the regulation of signaling pathways during capacitation as well as in both sperm-zona pellucida interaction and gamete fusion. These observations can be extended to humans as judged by our findings showing that the human homolog of the rodent protein (hCRISP1) is also involved in both stages of fertilization. Evidence supports that other members of the CRISP family secreted in the testis (CRISP2), epididymis (CRISP3-4) or during ejaculation (CRISP3) are also involved in sperm-egg interaction, supporting the existence of a functional redundancy and cooperation between homolog proteins ensuring the success of fertilization. Together, our observations indicate that CRISP proteins accompany spermatozoa along their transit through both the male and female reproductive tracts. We believe these results not only contribute to a better mechanistic understanding of fertilization but also support CRISP proteins as excellent candidates for future research on infertility and contraception.


Assuntos
Epididimo/metabolismo , Fertilização/fisiologia , Glicoproteínas de Membrana/metabolismo , Interações Espermatozoide-Óvulo/fisiologia , Animais , Feminino , Humanos , Masculino , Capacitação Espermática/fisiologia , Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA