Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(3): 1919-1929, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470099

RESUMO

Rapid and cost-effective in vivo assays to screen potential environmental neurodevelopmental toxicants are necessary to address the limitations of in vitro platforms, such as the inability to fully recapitulate the developmental and physiological processes of whole organisms. In the present study, a rapid zebrafish behavioral profiling assay was developed to characterize the neurodevelopmental effects of environmental substances by quantitatively evaluating multiple spontaneous movement features of zebrafish embryos. This video analysis-based assay automatically segmented every embryo and thus was able to accurately quantify spontaneous movement features, including frequency, duration, intensity, interval, and the number of continuous movements. When tested with eight environmental substances known to be neurodevelopmental toxicants, such as chlorpyrifos and bisphenol A, the assay successfully captured frequency alterations that were well-documented in previous studies while also providing additional information. Using an optimized procedure, we further assessed 132 potential neurotoxins that spanned a wide range of molecular targets, many of which were previously detected in environmental waterbodies. The distinct altered behavioral barcodes indicated that the spontaneous movement was impacted by diverse neuroactive substances, and the effects could be effectively evaluated with the developed assay. The web-based tool, named EMAnalysis, is further provided at http://www.envh.sjtu.edu.cn/zebrafish_contraction.jsp. Thus, this assay provides an efficient platform to accelerate the pace of neurotoxic environmental contaminant discoveries.


Assuntos
Clorpirifos , Peixe-Zebra , Animais , Bioensaio , Clorpirifos/toxicidade , Embrião não Mamífero , Neurotoxinas
2.
Environ Sci Technol ; 53(3): 1639-1649, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30608651

RESUMO

Aquatic systems are contaminated by many metals but their effects as mixtures on organisms are not well understood. Here, we assessed effects of aluminum with fairly well-known modes of actions and indium, an understudied emerging contaminant from electronics, followed by studying equi-effective mixtures thereof. We report acute and adverse phenotypic effects in Daphnia magna adults and global transcriptomic effects employing RNA sequencing in neonates. The mixture induced more than additive activity in mortality and in physiological effects, including growth and reproduction. Similarly, transcriptomic effects were more than additive, as indicated by a markedly higher number of 463 differentially expressed transcripts in the mixture and by distinct classes of genes assigned to several biological functions, including metabolic processes, suggesting depleted energy reserves, which may be responsible for the observed impaired reproduction and growth. A gene set enrichment analysis (GSEA) of a priori known response pathways for aluminum confirmed activation of distinct molecular pathways by indium. Our study is highlighting more than additive effects at the transcriptional and physiological level and is providing a state-of-the art approach to mixture analysis, which is important for risk assessment of these metals and metal mixtures.


Assuntos
Daphnia , Poluentes Químicos da Água , Alumínio , Animais , Humanos , Índio , Recém-Nascido , Toxicogenética , Transcriptoma
3.
PNAS Nexus ; 1(5): pgac230, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712354

RESUMO

The use of agrochemicals is increasingly recognized as interfering with pollination services due to its detrimental effects on pollinators. Compared to the relatively well-studied chemical toxicity of agrochemicals, little is known on how they influence various biophysical floral cues that are used by pollinating insects to identify floral rewards. Here, we show that widely used horticultural and agricultural synthetic fertilizers affect bumblebee foraging behavior by altering a complex set of interlinked biophysical properties of the flower. We provide empirical and model-based evidence that synthetic fertilizers recurrently alter the magnitude and dynamics of floral electrical cues, and that similar responses can be observed with the neonicotinoid pesticide imidacloprid. We show that biophysical responses interact in modifying floral electric fields and that such changes reduce bumblebee foraging, reflecting a perturbation in the sensory events experienced by bees during flower visitation. This unveils a previously unappreciated anthropogenic interference elicited by agrochemicals within the electric landscape that is likely relevant for a wide range of chemicals and organisms that rely on naturally occurring electric fields.

4.
Mar Genomics ; 65: 100981, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35969942

RESUMO

Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[a]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 µM) and BaP (0.1 µM). In C. finmarchicus and C. glacialis, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3'-phosphoadenosine 5'-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in C. finmarchicus and C. glacialis but were not affected in C. hyperboreus. However, a larger number of genes and pathways were modulated in C. hyperboreus by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in C. finmarchicus and C. glacialis. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.


Assuntos
Copépodes , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidade , Copépodes/genética , Copépodes/metabolismo , Fenantrenos/metabolismo , Fenantrenos/toxicidade , Transcriptoma , Poluentes Químicos da Água/toxicidade , Xenobióticos
5.
Toxicol In Vitro ; 75: 105193, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34015484

RESUMO

Polar cod (Boreogadus saida) is a key species in the arctic marine ecosystem vulnerable to effects of pollution, particularly from petroleum related activities. To facilitate studying the effects of those pollutants, we adapted a precision-cut liver slice culture protocol for this species. Using this system on board a research vessel, we studied gene expression in liver slice after exposure to the polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BaP), ethynylestradiol (EE2), and their mixtures, to map their molecular targets and examine possible anti-estrogenic effects of BaP. The exposure experiments were performed with BaP alone (0.1, 1, and 10 µM) or in combination with low concentrations of EE2 (5 nM) to mimic physiological estradiol levels in early vitellogenic female fish. Transcriptome analysis (RNA-seq) was performed after 72 h exposure in culture to map the genes and cellular pathways affected. The results provide a view of global transcriptome responses to BaP and EE2, which resulted in enrichment of many pathways such as the aryl hydrocarbon (Ahr) and estrogen receptor pathways. In the mixture exposure, BaP resulted in anti-estrogenic effects, shown by attenuation of EE2 activated transcription of many estrogen target genes. The results from this ex vivo experiment suggest that pollutants that activate the Ahr pathway such as the PAH compound BaP can result in anti-estrogenic effects that may lead to endocrine disruption in polar cod.


Assuntos
Benzo(a)pireno/farmacologia , Antagonistas de Estrogênios/farmacologia , Estrogênios/farmacologia , Etinilestradiol/farmacologia , Fígado/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Feminino , Gadiformes/genética , Perfilação da Expressão Gênica , Fígado/metabolismo , Técnicas de Cultura de Tecidos , Vitelogeninas/metabolismo
6.
Environ Toxicol Pharmacol ; 83: 103580, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33429071

RESUMO

Previous reports suggested that non-dioxin-like (NDL) PCB153 effects on cytochrome P450 3A (Cyp3a) expression in Atlantic killifish (Fundulus heteroclitus) gills differed between F0 generation fish from a PCB site (New Bedford Harbor; NBH) and a reference site (Scorton Creek; SC). Here, we examined effects of PCB153, dioxin-like (DL) PCB126, or a mixture of both, on Cyp3a56 mRNA in killifish generations removed from the wild, without environmental PCB exposures. PCB126 effects in liver and gills differed between populations, as expected. Gill Cyp3a56 was not affected by either congener in NBH F2 generation fish, but was induced by PCB153 in SC F1 fish, with females showing a greater response. PCB153 did not affect Cyp3a56 in liver of either population. Results suggest a heritable resistance to NDL-PCBs in killifish from NBH, in addition to that reported for DL PCBs. Induction of Cyp3a56 in gills may be a biomarker of exposure to NDL PCBs in fish populations that are not resistant to PCBs.


Assuntos
Citocromo P-450 CYP3A/biossíntese , Proteínas de Peixes/biossíntese , Fundulidae , Bifenilos Policlorados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP3A/genética , Tolerância a Medicamentos , Indução Enzimática , Feminino , Proteínas de Peixes/genética , Fundulidae/genética , Fundulidae/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Receptor de Pregnano X/genética , RNA Mensageiro/metabolismo
7.
Sci Rep ; 11(1): 23892, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903767

RESUMO

Orphan cytochrome P450 (CYP) enzymes are those for which biological substrates and function(s) are unknown. Cytochrome P450 20A1 (CYP20A1) is the last human orphan P450 enzyme, and orthologs occur as single genes in every vertebrate genome sequenced to date. The occurrence of high levels of CYP20A1 transcripts in human substantia nigra and hippocampus and abundant maternal transcripts in zebrafish eggs strongly suggest roles both in the brain and during early embryonic development. Patients with chromosome 2 microdeletions including CYP20A1 show hyperactivity and bouts of anxiety, among other conditions. Here, we created zebrafish cyp20a1 mutants using CRISPR/Cas9, providing vertebrate models with which to study the role of CYP20A1 in behavior and other neurodevelopmental functions. The homozygous cyp20a1 null mutants exhibited significant behavioral differences from wild-type zebrafish, both in larval and adult animals. Larval cyp20a1-/- mutants exhibited a strong increase in light-simulated movement (i.e., light-dark assay), which was interpreted as hyperactivity. Further, the larvae exhibited mild hypoactivity during the adaptation period of the optomotor assays. Adult cyp20a1 null fish showed a pronounced delay in adapting to new environments, which is consistent with an anxiety paradigm. Taken together with our earlier morpholino cyp20a1 knockdown results, the results described herein suggest that the orphan CYP20A1 has a neurophysiological role.


Assuntos
Ansiedade/genética , Sistema Enzimático do Citocromo P-450 , Movimento , Percepção Visual , Proteínas de Peixe-Zebra , Peixe-Zebra , Adaptação Fisiológica , Animais , Sistemas CRISPR-Cas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/fisiologia , Homozigoto , Mutação com Perda de Função , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
8.
Commun Biol ; 4(1): 1129, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561524

RESUMO

The most abundant polychlorinated biphenyl (PCB) congeners found in the environment and in humans are neurotoxic. This is of particular concern for early life stages because the exposure of the more vulnerable developing nervous system to neurotoxic chemicals can result in neurobehavioral disorders. In this study, we uncover currently unknown links between PCB target mechanisms and neurobehavioral deficits using zebrafish as a vertebrate model. We investigated the effects of the abundant non-dioxin-like (NDL) congener PCB153 on neuronal morphology and synaptic transmission linked to the proper execution of a sensorimotor response. Zebrafish that were exposed during development to concentrations similar to those found in human cord blood and PCB contaminated sites showed a delay in startle response. Morphological and biochemical data demonstrate that even though PCB153-induced swelling of afferent sensory neurons, the disruption of dopaminergic and GABAergic signaling appears to contribute to PCB-induced motor deficits. A similar delay was observed for other NDL congeners but not for the potent dioxin-like congener PCB126. The effects on important and broadly conserved signaling mechanisms in vertebrates suggest that NDL PCBs may contribute to neurodevelopmental abnormalities in humans and increased selection pressures in vertebrate wildlife.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Bifenilos Policlorados/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Peixe-Zebra/fisiologia , Animais
9.
Toxicol Sci ; 174(1): 51-62, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868891

RESUMO

Pregnane X receptor (PXR; NR1I2) is a nuclear receptor that regulates transcriptional responses to drug or xenobiotic exposure, including induction of CYP3A transcription, in many vertebrate species. PXR is activated by a wide range of ligands that differ across species, making functional studies on its role in the chemical defensome most relevant when approached in a species-specific manner. Knockout studies in mammals have shown a requirement for PXR in ligand-dependent activation of CYP3A expression or reporter gene activity. Morpholino knockdown of Pxr in zebrafish indicated a similar requirement. Here, we report on the generation of 2 zebrafish lines each carrying a heritable deletion in the pxr coding region, predicted to result in loss of a functional gene product. To our surprise, larvae homozygous for either of the pxr mutant alleles retain their ability to induce cyp3a65 mRNA expression following exposure to the established zebrafish Pxr ligand, pregnenolone. Thus, zebrafish carrying pxr alleles with deletions in either the DNA binding or the ligand-binding domains did not yield a loss-of-function phenotype, suggesting that a compensatory mechanism is responsible for cyp3a65 induction. Alternative possibilities are that Pxr is not required for the induction of selected genes, or that truncated yet functional mutant Pxr is sufficient for the downstream transcriptional effects. It is crucial that we develop a better understanding for the role of Pxr in this important biomedical test species. This study highlights the potential for compensatory mechanisms to avoid deleterious effects arising from gene mutations.


Assuntos
Hidrocarboneto de Aril Hidroxilases/biossíntese , Sistemas CRISPR-Cas , Indutores das Enzimas do Citocromo P-450/toxicidade , Marcação de Genes , Oxirredutases N-Desmetilantes/biossíntese , Receptor de Pregnano X/agonistas , Pregnenolona/toxicidade , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Hidrocarboneto de Aril Hidroxilases/genética , Indução Enzimática , Ligantes , Mutação , Oxirredutases N-Desmetilantes/genética , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
10.
Environ Pollut ; 249: 638-646, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30933761

RESUMO

Microplastics (<5 mm) are distributed ubiquitously in natural environments. The majority of microplastics in aquatic environments are shown to have rough surfaces due to various weathering processes (secondary microplastics; SMP), while laboratory studies predominantly utilise pristine microplastics (primary microplastics; PMP). Here we present the results from a study comparing the chronic effects of pristine PMP and artificially weathered SMP to three different Cladoceran species (Daphnia magna, Daphnia pulex, Ceriodaphnia dubia). We assessed the impact of PMP and SMP on reproductive output using various measured parameters, including time of first brood, size of first brood, size of first three broods, cumulative number of neonates, total number of broods and terminal length of test animals. Our results show that reproductive output of all species declined in a dose-dependent manner. The No Observed Effect Concentration (NOEC) was less than the lowest tested concentration (102 p/mL) for at least one measured endpoint for all species and both PMP and SMP. Further, it was inferred that species sensitivity varied inversely with body size for most endpoints, resulting in C. dubia being the most sensitive species; and D. magna being the least sensitive species under study. In addition, PMP appeared to have greater toxic potential as compared to SMP. This study is the first to directly compare the chronic toxicity of both pristine and weathered microplastic particles on three freshwater toxicological model organisms. Our results indicate that sensitivity in reproduction and growth to microplastics may differ between species and type of microplastic exposed; highlighting the importance of using multiple species and structural types of particles.


Assuntos
Cladocera/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Nanopartículas/toxicidade , Plásticos/toxicidade , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais
11.
Chemosphere ; 226: 774-781, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30965248

RESUMO

The impacts of nano- and microplastics (<100 nm and <5 mm, respectively) on terrestrial systems is to the present largely unexplored. Plastic particles are likely to accumulate in these systems primarily by the application of sewage sludge. The aim of the current study was to investigate the effects of three sizes of plastic particles (50, 500, and 4800 nm) on a terrestrial plant (cress; Lepidium sativum), using a standardized 72 h bioassay. Cress seeds were exposed to five different concentrations of plastics, ranging from 103 to 107 particles mL-1. Germination rate was significantly reduced after 8 h of exposure for all three sizes of plastics, with increased adverse effect with increasing plastic sizes. Seeds exposed to 4800 nm microplastics showed a germination rate decline from 78% in control to 17% in the highest exposure. No difference in germination rate occurred after 24 h of exposure, regardless of the size of the plastic used. Significant differences in root growth were observed after 24 h, but not after 48 or 72 h of exposure. Impacts on germination are likely due to physical blockage of the pores in the seed capsule by microplastics as shown by confocal microscopy of fluorescent microplastics. In later stages, the microplastics particularly accumulated on the root hairs. This is the first detailed study on the effect of nano- and microplastics on a vascular, terrestrial plant, and our results indicate short-term and transient adverse effects.


Assuntos
Lepidium sativum/efeitos dos fármacos , Plásticos/toxicidade , Sementes/efeitos dos fármacos , Brassicaceae , Germinação/efeitos dos fármacos , Tamanho da Partícula , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plásticos/metabolismo , Plásticos/farmacologia
12.
Commun Biol ; 2: 382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646185

RESUMO

Plastic nanoparticles originating from weathering plastic waste are emerging contaminants in aquatic environments, with unknown modes of action in aquatic organisms. Recent studies suggest that internalised nanoplastics may disrupt processes related to energy metabolism. Such disruption can be crucial for organisms during development and may ultimately lead to changes in behaviour. Here, we investigated the link between polystyrene nanoplastic (PSNP)-induced signalling events and behavioural changes. Larval zebrafish exhibited PSNP accumulation in the pancreas, which coincided with a decreased glucose level. By using hyperglycemic and glucocorticoid receptor (Gr) mutant larvae, we demonstrate that the PSNP-induced disruption in glucose homoeostasis coincided with increased cortisol secretion and hyperactivity in challenge phases. Our work sheds new light on a potential mechanism underlying nanoplastics toxicity in fish, suggesting that the adverse effect of PSNPs are at least in part mediated by Gr activation in response to disrupted glucose homeostasis, ultimately leading to aberrant locomotor activity.


Assuntos
Nanopartículas/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Hidrocortisona/metabolismo , Larva/efeitos dos fármacos , Larva/fisiologia , Atividade Motora/efeitos dos fármacos , Mutação , Plásticos/toxicidade , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Distribuição Tecidual , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
ACS Chem Neurosci ; 10(8): 3888-3899, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31291540

RESUMO

Serotonin (5-HT) is a key player in many physiological processes in both the adult organism and developing embryo. One of the mechanisms for 5-HT-mediated effects is covalent binding of 5-HT to the target proteins catalyzed by transglutaminases (serotonylation). Despite the implication in a variety of physiological processes, the involvement of serotonylation in embryonic development remains unclear. Here we tested the hypothesis that 5-HT serves as a substrate for transglutaminase-mediated transamidation of the nuclear proteins in the early embryos of both vertebrates and invertebrates. For this, we demonstrated that the level of serotonin immunoreactivity (5-HT-ir) in cell nuclei increases upon the elevation of 5-HT concentration in embryos of sea urchins, mollusks, and teleost fish. Consistently, pharmacological inhibition of transglutaminase activity resulted in the reduction of both brightness and nuclear localization of anti-5-HT staining. We identified specific and bright 5-HT-ir within nuclei attributed to a subset of different cell types: ectodermal and endodermal, macro- and micromeres, and blastoderm. Western blot and dot blot confirmed the presence of 5-HT-ir epitopes in the normal embryos of all the species examined. The experimental elevation of 5-HT level led to the enhancement of 5-HT-ir-related signal on blots in a species-specific manner. The obtained results demonstrate that 5-HT is involved in transglutaminase-dependent monoaminylation of nuclear proteins and suggest nuclear serotonylation as a possible regulatory mechanism during early embryonic development. The results reveal that this pathway is conserved in the development of both vertebrates and invertebrates.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Serotonina/metabolismo , Transglutaminases/metabolismo , Animais , Moluscos , Ouriços-do-Mar , Peixe-Zebra
14.
Environ Pollut ; 239: 733-740, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29723823

RESUMO

Microplastics (<5 mm, MP) are ubiquitously distributed in the environment, causing increasing concern regarding their potential toxicity to organisms. To date, most research has focussed on the impacts of MPs on marine and estuarine organisms, with fewer studies focussing on the effects of microplastics on freshwater ecosystems, especially under different environmental conditions. In the present study, the sensitivity of two temperate Cladoceran species, Daphnia magna and Daphnia pulex, and a smaller tropical species Ceriodaphnia dubia, to primary microplastics (PMP) and secondary (weathered) microplastics (SMP) was assessed. A prolonged acute toxicity assay (up to 72 or 96 h) was performed at 18°, 22°, and 26 °C, to determine the influence of temperature as an additional stressor and survival data were analysed using toxicokinetic-toxicodynamic (TK-TD) model. Acute sensitivity of D. magna and D. pulex to both PMP and SMP increased sharply with temperature, whereas that of C. dubia remained relatively stable across temperatures. C. dubia was the most sensitive species at 18 °C, followed by D. pulex and D. magna, which were of comparable sensitivity. However, this ranking was reversed at 26 °C as could be seen from the No Effect Concentration (NEC) estimates of the TK-TD model. In addition, SMP and PMP had a similar effect on D. magna and D. pulex, but PMP was more toxic to C. dubia. Effects on survival were strongly time-dependent and became substantially more severe after the standard 48 h test period. Our results indicate that sensitivity to microplastics may differ between species for different types of microplastics, and could be drastically influenced by temperature albeit at high exposure concentrations.


Assuntos
Daphnia/efeitos dos fármacos , Monitoramento Ambiental/métodos , Água Doce/química , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/metabolismo , Temperatura Alta , Plásticos/farmacocinética , Especificidade da Espécie , Testes de Toxicidade Aguda , Poluentes Químicos da Água/farmacocinética
15.
Nanotoxicology ; 11(8): 1059-1069, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29083253

RESUMO

Nanoplastic debris is currently expected to be ubiquitously distributed in aquatic environments and an emerging environmental issue affecting organisms across trophic levels. While ingestion of particles receives most attention, other routes of uptake and cellular accumulation remain unexplored. Here, the planktonic filter feeder Daphnia magna was used to track routes of uptake and target tissues of polystyrene nanoparticles (PSNPs). A sublethal concentration of 5 mg L-1 fluorescent PSNPs (25 nm) was used to monitor accumulation in adult animals as well as their embryos in the open brood pouch. A time series throughout embryonic development within the brood pouch revealed accumulation of PSNP in or on lipophilic cells in the early stages of embryonic development while the embryo is still surrounded by a chorion and before the beginning of organogenesis. In contrast, PSNP particles were neither detected in the gut epithelium nor in lipid droplets in adults. An ex vivo exposure of embryos to PSNP demonstrated a similar accumulation of PSNP in or on lipophilic cells, illustrating the likelihood of brood pouch-mediated PSNP uptake by embryos. By demonstrating embryo PSNP uptake via the brood pouch, data presented here give novel insights in bioaccumulation of nanoparticles and likely other lipophilic contaminants. Since this uptake route can occur within a diverse array of aquatic organisms, this study warrants consideration of brood pouch-mediated accumulation in efforts studying the hazards and risks of nanoparticle contamination.


Assuntos
Daphnia/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Nanopartículas/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/embriologia , Daphnia/ultraestrutura , Ingestão de Alimentos , Embrião não Mamífero/ultraestrutura , Microscopia Confocal , Microscopia de Fluorescência , Tamanho da Partícula
16.
Artigo em Inglês | MEDLINE | ID: mdl-29113114

RESUMO

Metallic nanoparticles (NPs) differ from other metal forms with respect to their large surface to volume ratio and subsequent inherent reactivity. Each new modification to a nanoparticle alters the surface to volume ratio, fate and subsequently the toxicity of the particle. Newly-engineered NPs are commonly available only in low quantities whereas, in general, rather large amounts are needed for fate characterizations and effect studies. This challenge is especially relevant for those NPs that have low inherent toxicity combined with low bioavailability. Therefore, within our study, we developed new testing strategies that enable working with low quantities of NPs. The experimental testing method was tailor-made for NPs, whereas we also developed translational models based on different dose-metrics allowing to determine dose-response predictions for NPs. Both the experimental method and the predictive models were verified on the basis of experimental effect data collected using zebrafish embryos exposed to metallic NPs in a range of different chemical compositions and shapes. It was found that the variance in the effect data in the dose-response predictions was best explained by the minimal diameter of the NPs, whereas the data confirmed that the predictive model is widely applicable to soluble metallic NPs. The experimental and model approach developed in our study support the development of (eco)toxicity assays tailored to nano-specific features.


Assuntos
Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Testes de Toxicidade/métodos , Animais , Relação Dose-Resposta a Droga , Embrião não Mamífero , Peixe-Zebra
17.
Aquat Toxicol ; 190: 112-120, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28704660

RESUMO

Microplastics are a contaminant of emergent concern in the environment, however, to date there is a limited understanding on their movement within organisms and the response of organisms. In the current study zebrafish embryos at different development stages were exposed to 700nm fluorescent polystyrene (PS) particles and the response pathway after exposure was investigated using imaging and transcriptomics. Our results show limited spreading of particles within the larvae after injection during the blastula stage. This is in contrast to injection of PS particles in the yolk of 2-day old embryos, which resulted in redistribution of the PS particles throughout the bloodstream, and accumulation in the heart region. Although injection was local, the transcriptome profiling showed strong responses of zebrafish embryos exposed to PS particle, indicating a systemic response. We found several biological pathways activated which are related to an immune response in the PS exposed zebrafish larvae. Most notably the complement system was enriched as indicated by upregulation of genes in the alternative complement pathway (e.g. cfhl3, cfhl4, cfb and c9). The fact that complement pathway is activated indicates that plastic microparticles are integrated in immunological recognition processes. This was supported by fluorescence microscopy results, in which we observed co-localisation of neutrophils and macrophages around the PS particles. Identifying these key events can be a first building block to the development of an adverse outcome pathway (AOP). These data subsequently can be used within ecological and human risk assessment.


Assuntos
Poliestirenos/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Perfilação da Expressão Gênica , Larva/genética , Larva/metabolismo , Tamanho da Partícula , Poliestirenos/farmacocinética , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA