Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
PLoS Biol ; 21(8): e3002239, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651504

RESUMO

Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At a fine scale, a group of auditory cortical regions excluded several higher-order auditory areas and segregated maximally from the prefrontal cortex. On mesoscale, the proximity of limbic structures to the auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macroscale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders.


Assuntos
Córtex Auditivo , Humanos , Percepção Auditiva , Encéfalo , Eletrocorticografia , Eletrofisiologia
2.
Mol Psychiatry ; 29(5): 1228-1240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317012

RESUMO

Transcranial magnetic stimulation (TMS) is increasingly used as a noninvasive technique for neuromodulation in research and clinical applications, yet its mechanisms are not well understood. Here, we present the neurophysiological effects of TMS using intracranial electrocorticography (iEEG) in neurosurgical patients. We first evaluated safety in a gel-based phantom. We then performed TMS-iEEG in 22 neurosurgical participants with no adverse events. We next evaluated intracranial responses to single pulses of TMS to the dorsolateral prefrontal cortex (dlPFC) (N = 10, 1414 electrodes). We demonstrate that TMS is capable of inducing evoked potentials both locally within the dlPFC and in downstream regions functionally connected to the dlPFC, including the anterior cingulate and insular cortex. These downstream effects were not observed when stimulating other distant brain regions. Intracranial dlPFC electrical stimulation had similar timing and downstream effects as TMS. These findings support the safety and promise of TMS-iEEG in humans to examine local and network-level effects of TMS with higher spatiotemporal resolution than currently available methods.


Assuntos
Eletrocorticografia , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Eletrocorticografia/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Mapeamento Encefálico/métodos , Potenciais Evocados/fisiologia , Adulto Jovem , Estimulação Elétrica/métodos
3.
Ann Neurol ; 94(3): 421-433, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37183996

RESUMO

OBJECTIVE: Time orientation is a fundamental cognitive process in which one's personal sense of time is matched with a universal reference. Time orientation is commonly assessed through mental status examination, yet its neural correlates remain unclear. Large lesions have been associated with deficits in time orientation, but the regional anatomy implicated in time disorientation is not well established. The current study investigates the anatomy of time disorientation and its network correlates in patients with focal brain lesions. METHODS: Time orientation was assessed 3 months or more after lesion onset using the Benton Temporal Orientation Test (BTOT) in 550 patients with acquired, focal brain lesions, 39 of whom were impaired. Multivariate lesion-symptom mapping and lesion network mapping were used to evaluate the anatomy and networks associated with time disorientation. Performance on a variety of neuropsychological tests was compared between the time oriented and time disoriented group. RESULTS: Lesion-symptom mapping showed that lesions of the precuneus, medial temporal lobes (MTL), and occipito-temporal cortex were associated with time disorientation (r = 0.264, p < 0.001). Lesion network mapping using normative connectome data demonstrated that these regional findings occurred along a network that includes white and gray matter connecting the precuneus and MTL. There was a strong behavioral and anatomical association of time disorientation with memory impairment, such that the 2 processes could not be fully disentangled. INTERPRETATION: We interpret these findings as novel evidence for a network involving the precuneus and the medial temporal lobe in supporting time orientation. ANN NEUROL 2023;94:421-433.


Assuntos
Imageamento por Ressonância Magnética , Lobo Temporal , Humanos , Lobo Parietal , Córtex Cerebral , Confusão , Testes Neuropsicológicos , Mapeamento Encefálico
4.
Brain ; 146(4): 1672-1685, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36181425

RESUMO

Understanding neural circuits that support mood is a central goal of affective neuroscience, and improved understanding of the anatomy could inform more targeted interventions in mood disorders. Lesion studies provide a method of inferring the anatomical sites causally related to specific functions, including mood. Here, we performed a large-scale study evaluating the location of acquired, focal brain lesions in relation to symptoms of depression. Five hundred and twenty-six individuals participated in the study across two sites (356 male, average age 52.4 ± 14.5 years). Each subject had a focal brain lesion identified on structural imaging and an assessment of depression using the Beck Depression Inventory-II, both obtained in the chronic period post-lesion (>3 months). Multivariate lesion-symptom mapping was performed to identify lesion sites associated with higher or lower depression symptom burden, which we refer to as 'risk' versus 'resilience' regions. The brain networks and white matter tracts associated with peak regional findings were identified using functional and structural lesion network mapping, respectively. Lesion-symptom mapping identified brain regions significantly associated with both higher and lower depression severity (r = 0.11; P = 0.01). Peak 'risk' regions include the bilateral anterior insula, bilateral dorsolateral prefrontal cortex and left dorsomedial prefrontal cortex. Functional lesion network mapping demonstrated that these 'risk' regions localized to nodes of the salience network. Peak 'resilience' regions include the right orbitofrontal cortex, right medial prefrontal cortex and right inferolateral temporal cortex, nodes of the default mode network. Structural lesion network mapping implicated dorsal prefrontal white matter tracts as 'risk' tracts and ventral prefrontal white matter tracts as 'resilience' tracts, although the structural lesion network mapping findings did not survive correction for multiple comparisons. Taken together, these results demonstrate that lesions to specific nodes of the salience network and default mode network are associated with greater risk versus resiliency for depression symptoms in the setting of focal brain lesions.


Assuntos
Mapeamento Encefálico , Depressão , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Depressão/diagnóstico por imagem , Depressão/patologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Córtex Pré-Frontal
5.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941692

RESUMO

Hubs are highly connected brain regions important for coordinating processing in brain networks. It is unclear, however, which measures of network "hubness" are most useful in identifying brain regions critical to human cognition. We tested how closely two measures of hubness-edge density and participation coefficient, derived from white and gray matter, respectively-were associated with general cognitive impairment after brain damage in two large cohorts of patients with focal brain lesions (N = 402 and 102, respectively) using cognitive tests spanning multiple cognitive domains. Lesions disrupting white matter regions with high edge density were associated with cognitive impairment, whereas lesions damaging gray matter regions with high participation coefficient had a weaker, less consistent association with cognitive outcomes. Similar results were observed with six other gray matter hubness measures. This suggests that damage to densely connected white matter regions is more cognitively impairing than similar damage to gray matter hubs, helping to explain interindividual differences in cognitive outcomes after brain damage.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Mapeamento Encefálico , Córtex Cerebral/patologia , Cognição , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Substância Branca/patologia , Adulto Jovem
6.
Neuroimage ; 277: 120211, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385393

RESUMO

Multivariate autoregressive (MVAR) model estimation enables assessment of causal interactions in brain networks. However, accurately estimating MVAR models for high-dimensional electrophysiological recordings is challenging due to the extensive data requirements. Hence, the applicability of MVAR models for study of brain behavior over hundreds of recording sites has been very limited. Prior work has focused on different strategies for selecting a subset of important MVAR coefficients in the model to reduce the data requirements of conventional least-squares estimation algorithms. Here we propose incorporating prior information, such as resting state functional connectivity derived from functional magnetic resonance imaging, into MVAR model estimation using a weighted group least absolute shrinkage and selection operator (LASSO) regularization strategy. The proposed approach is shown to reduce data requirements by a factor of two relative to the recently proposed group LASSO method of Endemann et al (Neuroimage 254:119057, 2022) while resulting in models that are both more parsimonious and more accurate. The effectiveness of the method is demonstrated using simulation studies of physiologically realistic MVAR models derived from intracranial electroencephalography (iEEG) data. The robustness of the approach to deviations between the conditions under which the prior information and iEEG data is obtained is illustrated using models from data collected in different sleep stages. This approach allows accurate effective connectivity analyses over short time scales, facilitating investigations of causal interactions in the brain underlying perception and cognition during rapid transitions in behavioral state.


Assuntos
Eletrocorticografia , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Eletrocorticografia/métodos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Simulação por Computador , Algoritmos , Eletroencefalografia/métodos
7.
Cerebellum ; 22(3): 370-378, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35568792

RESUMO

Posterior fossa arachnoid cysts (PFACs) are rare congenital abnormalities observed in 0.3 to 1.7% of the population and are traditionally thought to be benign. While conducting a neuroimaging study investigating cerebellar structure in bipolar disorder, we observed a higher incidence of PFACs in bipolar patients (5 of 75; 6.6%) compared to the neuronormative control group (1 of 54; 1.8%). In this report, we detail the cases of the five patients with bipolar disorder who presented with PFACs. Additionally, we compare neuropsychiatric measures and cerebellar volumes of these patients to neuronormative controls and bipolar controls (those with bipolar disorder without neuroanatomical abnormalities). Our findings suggest that patients with bipolar disorder who also present with PFACs may have a milder symptom constellation relative to patients with bipolar disorder and no neuroanatomical abnormalities. Furthermore, our observations align with prior literature suggesting an association between PFACs and psychiatric symptoms that warrants further study. While acknowledging sample size limitations, our primary aim in the present work is to highlight a connection between PFACs and BD-associated symptoms and encourage further study of cerebellar abnormalities in psychiatry.


Assuntos
Cistos Aracnóideos , Transtorno Bipolar , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Cerebelo/anormalidades , Fossa Craniana Posterior
8.
Brain ; 145(4): 1338-1353, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35025994

RESUMO

Clinicians and scientists alike have long sought to predict the course and severity of chronic post-stroke cognitive and motor outcomes, as the ability to do so would inform treatment and rehabilitation strategies. However, it remains difficult to make accurate predictions about chronic post-stroke outcomes due, in large part, to high inter-individual variability in recovery and a reliance on clinical heuristics rather than empirical methods. The neuroanatomical location of a stroke is a key variable associated with long-term outcomes, and because lesion location can be derived from routinely collected clinical neuroimaging data there is an opportunity to use this information to make empirically based predictions about post-stroke deficits. For example, lesion location can be compared to statistically weighted multivariate lesion-behaviour maps of neuroanatomical regions that, when damaged, are associated with specific deficits based on aggregated outcome data from large cohorts. Here, our goal was to evaluate whether we can leverage lesion-behaviour maps based on data from two large cohorts of individuals with focal brain lesions to make predictions of 12-month cognitive and motor outcomes in an independent sample of stroke patients. Further, we evaluated whether we could augment these predictions by estimating the structural and functional networks disrupted in association with each lesion-behaviour map through the use of structural and functional lesion network mapping, which use normative structural and functional connectivity data from neurologically healthy individuals to elucidate lesion-associated networks. We derived these brain network maps using the anatomical regions with the strongest association with impairment for each cognitive and motor outcome based on lesion-behaviour map results. These peak regional findings became the 'seeds' to generate networks, an approach that offers potentially greater precision compared to previously used single-lesion approaches. Next, in an independent sample, we quantified the overlap of each lesion location with the lesion-behaviour maps and structural and functional lesion network mapping and evaluated how much variance each could explain in 12-month behavioural outcomes using a latent growth curve statistical model. We found that each lesion-deficit mapping modality was able to predict a statistically significant amount of variance in cognitive and motor outcomes. Both structural and functional lesion network maps were able to predict variance in 12-month outcomes beyond lesion-behaviour mapping. Functional lesion network mapping performed best for the prediction of language deficits, and structural lesion network mapping performed best for the prediction of motor deficits. Altogether, these results support the notion that lesion location and lesion network mapping can be combined to improve the prediction of post-stroke deficits at 12-months.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Encéfalo/patologia , Mapeamento Encefálico/métodos , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia
9.
J Neurosci ; 40(46): 8924-8937, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33046547

RESUMO

General cognitive ability, or general intelligence (g), is central to cognitive science, yet the processes that constitute it remain unknown, in good part because most prior work has relied on correlational methods. Large-scale behavioral and neuroanatomical data from neurologic patients with focal brain lesions can be leveraged to advance our understanding of the key mechanisms of g, as this approach allows inference on the independence of cognitive processes along with elucidation of their respective neuroanatomical substrates. We analyzed behavioral and neuroanatomical data from 402 humans (212 males; 190 females) with chronic, focal brain lesions. Structural equation models (SEMs) demonstrated a psychometric isomorphism between g and working memory in our sample (which we refer to as g/Gwm), but not between g and other cognitive abilities. Multivariate lesion-behavior mapping analyses indicated that g and working memory localize most critically to a site of converging white matter tracts deep to the left temporo-parietal junction. Tractography analyses demonstrated that the regions in the lesion-behavior map of g/Gwm were primarily associated with the arcuate fasciculus. The anatomic findings were validated in an independent cohort of acute stroke patients (n = 101) using model-based predictions of cognitive deficits generated from the Iowa cohort lesion-behavior maps. The neuroanatomical localization of g/Gwm provided the strongest prediction of observed g in the new cohort (r = 0.42, p < 0.001), supporting the anatomic specificity of our findings. These results provide converging behavioral and anatomic evidence that working memory is a key mechanism contributing to domain-general cognition.SIGNIFICANCE STATEMENT General cognitive ability (g) is thought to play an important role in individual differences in adaptive behavior, yet its core processes remain unknown, in large part because of difficulties in making causal inferences from correlated data. Using data from patients with focal brain damage, we demonstrate that there is a strong psychometric correspondence between g and working memory - the ability to maintain and control mental information, and that the critical neuroanatomical substrates of g and working memory include the arcuate fasciculus. This work provides converging behavioral and neuroanatomical evidence that working memory is a key mechanism contributing to domain-general cognition.


Assuntos
Cognição/fisiologia , Psicometria , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Animais , Mapeamento Encefálico , Transtornos Cognitivos/patologia , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Potenciais Evocados , Feminino , Humanos , Inteligência/fisiologia , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia
10.
Neuroimage ; 245: 118642, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34637901

RESUMO

Motor recovery following ischemic stroke is contingent on the ability of surviving brain networks to compensate for damaged tissue. In rodent models, sensory and motor cortical representations have been shown to remap onto intact tissue around the lesion site, but remapping to more distal sites (e.g. in the contralesional hemisphere) has also been observed. Resting state functional connectivity (FC) analysis has been employed to study compensatory network adaptations in humans, but mechanisms and time course of motor recovery are not well understood. Here, we examine longitudinal FC in 23 first-episode ischemic pontine stroke patients and utilize a graph matching approach to identify patterns of functional connectivity reorganization during recovery. We quantified functional reorganization between several intervals ranging from 1 week to 6 months following stroke, and demonstrated that the areas that undergo functional reorganization most frequently are in cerebellar/subcortical networks. Brain regions with more structural and functional connectome disruption due to the stroke also had more remapping over time. Finally, we show that functional reorganization is correlated with the extent of motor recovery in the early to late subacute phases, and furthermore, individuals with greater baseline motor impairment demonstrate more extensive early subacute functional reorganization (from one to two weeks post-stroke) and this reorganization correlates with better motor recovery at 6 months. Taken together, these results suggest that our graph matching approach can quantify recovery-relevant, whole-brain functional connectivity network reorganization after stroke.


Assuntos
Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade
11.
J Neurosci Res ; 99(1): 361-373, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594566

RESUMO

Functional neuroimaging research has consistently associated brain structures within the default mode network (DMN) and frontoparietal network (FPN) with mind-wandering. Targeted lesion research has documented impairments in mind-wandering after damage to the medial prefrontal cortex (mPFC) and hippocampal regions associated with the DMN. However, no lesion studies to date have applied lesion network mapping to identify common networks associated with deficits in mind-wandering. In lesion network mapping, resting-state functional connectivity data from healthy participants are used to infer which brain regions are functionally connected to each lesion location from a sample with brain injury. In the current study, we conducted a lesion network mapping analysis to test the hypothesis that lesions affecting the DMN and FPN would be associated with diminished mind-wandering. We assessed mind-wandering frequency on the Imaginal Processes Inventory (IPI) in participants with brain injury (n = 29) and healthy comparison participants without brain injury (n = 19). Lesion network mapping analyses showed the strongest association of reduced mind-wandering with the left inferior parietal lobule within the DMN. In addition, traditional lesion symptom mapping results revealed that reduced mind-wandering was associated with lesions of the dorsal, ventral, and anterior sectors of mPFC, parietal lobule, and inferior frontal gyrus in the DMN (p < 0.05 uncorrected). These findings provide novel lesion support for the role of the DMN in mind-wandering and contribute to a burgeoning literature on the neural correlates of spontaneous cognition.


Assuntos
Atenção/fisiologia , Lesões Encefálicas/fisiopatologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Rede de Modo Padrão/fisiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Cogn Neurosci ; 32(12): 2303-2319, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32902335

RESUMO

The human thalamus has been suggested to be involved in executive function, based on animal studies and correlational evidence from functional neuroimaging in humans. Human lesion studies, examining behavioral deficits associated with focal brain injuries, can directly test the necessity of the human thalamus for executive function. The goal of our study was to determine the specific lesion location within the thalamus as well as the potential disruption of specific thalamocortical functional networks, related to executive dysfunction. We assessed executive function in 15 patients with focal thalamic lesions and 34 comparison patients with lesions that spared the thalamus. We found that patients with mediodorsal thalamic lesions exhibited more severe impairment in executive function when compared to both patients with thalamic lesions that spared the mediodorsal nucleus and to comparison patients with lesions outside the thalamus. Furthermore, we employed a lesion network mapping approach to map cortical regions that show strong functional connectivity with the lesioned thalamic subregions in the normative functional connectome. We found that thalamic lesion sites associated with more severe deficits in executive function showed stronger functional connectivity with ACC, dorsomedial PFC, and frontoparietal network, compared to thalamic lesions not associated with executive dysfunction. These are brain regions and functional networks whose dysfunction could contribute to impaired executive functioning. In aggregate, our findings provide new evidence that delineates a thalamocortical network for executive function.


Assuntos
Conectoma , Função Executiva , Animais , Humanos , Imageamento por Ressonância Magnética , Núcleo Mediodorsal do Tálamo , Tálamo/diagnóstico por imagem
13.
Hum Brain Mapp ; 41(14): 3984-3992, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32573885

RESUMO

Rapid eye movement (REM) sleep is a paradoxical state where the individual appears asleep while the electroencephalogram pattern resembles that of wakefulness. Regional differences in brain metabolism have been observed during REM sleep compared to wakefulness, but it is not known whether the spatial distribution of metabolic differences corresponds to known functional networks in the brain. Here, we use a combination of techniques to evaluate the networks associated with sites of REM sleep activation and deactivation from previously published positron emission tomography studies. We use seed-based functional connectivity from healthy adults acquired during quiet rest to show that REM-activation regions are functionally connected in a network that includes retrosplenial cingulate cortex, parahippocampal gyrus, and extrastriate visual cortices, corresponding to components of the default mode network and visual networks. Regions deactivated during REM sleep localize to right-lateralized fronto-parietal and salience networks. A negatively correlated relationship was observed between REM-activation and deactivation networks. Together, these findings show that regional activation and deactivation patterns of REM sleep tend to occur in distinct functional connectivity networks that are present during wakefulness, providing insights regarding the differential contributions of brain regions to the distinct subjective experiences that occur during REM sleep (dreaming) relative to wakefulness.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Tomografia por Emissão de Pósitrons , Sono REM/fisiologia , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Humanos , Rede Nervosa/diagnóstico por imagem
14.
Ann Neurol ; 84(6): 926-930, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30421457

RESUMO

In this study, we evaluate the role of the thalamus in the neural circuitry of arousal. Level of consciousness within the first 12 hours of a thalamic stroke is assessed with lesion symptom mapping. Impaired arousal correlates with lesions in the paramedian posterior thalamus near the centromedian and parafascicular nuclei, posterior hypothalamus, and midbrain tegmentum. All patients with severely impaired arousal (coma, stupor) had lesion extension into the midbrain and/or pontine tegmentum, whereas purely thalamic lesions did not severely impair arousal. These results are consistent with growing evidence that pathways most critical for human arousal lie outside the thalamus. Ann Neurol 2018;84:926-930.


Assuntos
Tronco Encefálico/patologia , Coma/etiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Estupor/etiologia , Tálamo/patologia , Nível de Alerta/fisiologia , Mapeamento Encefálico , Coma/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Estupor/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Fatores de Tempo
15.
Proc Natl Acad Sci U S A ; 111(16): 6098-103, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711387

RESUMO

Gambling is a naturalistic example of risky decision-making. During gambling, players typically display an array of cognitive biases that create a distorted expectancy of winning. This study investigated brain regions underpinning gambling-related cognitive distortions, contrasting patients with focal brain lesions to the ventromedial prefrontal cortex (vmPFC), insula, or amygdala ("target patients") against healthy comparison participants and lesion comparison patients (i.e., with lesions that spare the target regions). A slot machine task was used to deliver near-miss outcomes (i.e., nonwins that fall spatially close to a jackpot), and a roulette game was used to examine the gambler's fallacy (color decisions following outcome runs). Comparison groups displayed a heightened motivation to play following near misses (compared with full misses), and manifested a classic gambler's fallacy effect. Both effects were also observed in patients with vmPFC and amygdala damage, but were absent in patients with insula damage. Our findings indicate that the distorted cognitive processing of near-miss outcomes and event sequences may be ordinarily supported by the recruitment of the insula. Interventions to reduce insula reactivity could show promise in the treatment of disordered gambling.


Assuntos
Córtex Cerebral/patologia , Transtornos Cognitivos/patologia , Jogo de Azar , Córtex Pré-Frontal/patologia , Tonsila do Cerebelo/patologia , Comportamento de Escolha , Simulação por Computador , Humanos , Motivação , Análise e Desempenho de Tarefas
16.
Proc Natl Acad Sci U S A ; 111(39): 14247-52, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25225403

RESUMO

Hubs are network components that hold positions of high importance for network function. Previous research has identified hubs in human brain networks derived from neuroimaging data; however, there is little consensus on the localization of such hubs. Moreover, direct evidence regarding the role of various proposed hubs in network function (e.g., cognition) is scarce. Regions of the default mode network (DMN) have been frequently identified as "cortical hubs" of brain networks. On theoretical grounds, we have argued against some of the methods used to identify these hubs and have advocated alternative approaches that identify different regions of cortex as hubs. Our framework predicts that our proposed hub locations may play influential roles in multiple aspects of cognition, and, in contrast, that hubs identified via other methods (including salient regions in the DMN) might not exert such broad influence. Here we used a neuropsychological approach to directly test these predictions by studying long-term cognitive and behavioral outcomes in 30 patients, 19 with focal lesions to six "target" hubs identified by our approaches (high system density and participation coefficient) and 11 with focal lesions to two "control" hubs (high degree centrality). In support of our predictions, we found that damage to target locations produced severe and widespread cognitive deficits, whereas damage to control locations produced more circumscribed deficits. These findings support our interpretation of how neuroimaging-derived network measures relate to cognition and augment classic neuroanatomically based predictions about cognitive and behavioral outcomes after focal brain injury.


Assuntos
Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/psicologia , Rede Nervosa/fisiopatologia , Adulto , Idoso , Comportamento , Lesões Encefálicas/patologia , Mapeamento Encefálico , Estudos de Casos e Controles , Cognição , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Modelos Psicológicos , Rede Nervosa/lesões , Vias Neurais/lesões , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Testes Neuropsicológicos
17.
Hippocampus ; 26(6): 727-38, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26606553

RESUMO

The amygdala and the hippocampus are associated with emotional processing and declarative memory, respectively. Studies have shown that patients with bilateral hippocampal damage caused by anoxia/ischemia, and patients with probable Alzheimer's disease (AD), can experience emotions for prolonged periods of time, even when they cannot remember what caused the emotion in the first place (Feinstein et al. (2010) Proc Natl Acad Sci USA 107:7674-7679; Guzmán-Vélez et al. (2014) Cogn Behav Neurol 27:117-129). This study aimed to investigate, for the first time, the roles of the amygdala and hippocampus in the dissociation between feelings of emotion and declarative memory for emotion-inducing events in patients with AD. Individuals with probable AD (N = 12) and age-matched healthy comparisons participants (HCP; N = 12) completed a high-resolution (0.44 × 0.44 × 0.80 mm) T2-weighted structural MR scan of the medial temporal lobe. Each of these individuals also completed two separate emotion induction procedures (sadness and happiness) using film clips. We collected real-time emotion ratings at baseline and multiple times postinduction, and administered a test of declarative memory shortly after each induction. Consistent with previous research, hippocampal volume was significantly smaller in patients with AD compared with HCP, and was positively correlated with memory for the film clips. Sustained feelings of emotion and amygdala volume did not significantly differ between patients with AD and HCP. Follow-up analyses showed a significant negative correlation between amygdala volume and sustained sadness, and a significant positive correlation between amygdala volume and sustained happiness. Our findings suggest that the amygdala is important for regulating and sustaining an emotion independent of hippocampal function and declarative memory for the emotion-inducing event. © 2015 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Tonsila do Cerebelo/diagnóstico por imagem , Emoções/fisiologia , Hipocampo/diagnóstico por imagem , Memória/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tamanho do Órgão , Reconhecimento Automatizado de Padrão , Análise de Regressão , Gravação em Vídeo
18.
J Int Neuropsychol Soc ; 20(1): 52-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23759126

RESUMO

Executive functions (EF) encompass a variety of higher-order capacities such as judgment, planning, decision-making, response monitoring, insight, and self-regulation. Measuring such abilities quantitatively and establishing their neural correlates has proven to be challenging. Here, using a lesion-deficit approach, we report the neural correlates of a variety of EF tests that were developed under the auspices of the NINDS-supported EXAMINER project (Kramer, 2011; www.examiner.ucsf.edu). We administered a diverse set of EF tasks that tap three general domains--cognitive, social/emotional, and insight--to 37 patients with focal lesions to the frontal lobes, and 25 patients with lesions outside the frontal lobes. Using voxel-based lesion-symptom mapping (VLSM), we found that damage to the ventromedial prefrontal cortex (vmPFC) was predominately associated with deficits in social/emotional aspects of EF, while damage to dorsolateral prefrontal cortex (dlPFC) and anterior cingulate was predominately associated with deficits in cognitive aspects of EF. Evidence for an important role of some non-frontal regions (e.g., the temporal poles) in some aspects of EF was also found. The results provide further evidence for the neural basis of EF, and extend previous findings of the dissociation between the roles of the ventromedial and dorsolateral prefrontal sectors in organizing, implementing, and monitoring goal-directed behavior.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Função Executiva/fisiologia , Testes Neuropsicológicos , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37905134

RESUMO

Breathing is a complex, vital function that can be modulated to influence physical and mental well-being. However, the role of cortical and subcortical brain regions in voluntary control of human respiration is underexplored. Here we investigated the influence of damage to human frontal, temporal, or limbic regions on the sensation and regulation of breathing patterns. Participants performed a respiratory regulation task across regular and irregular frequencies ranging from 6 to 60 breaths per minute (bpm), with a counterbalanced hand motor control task. Interoceptive and affective states induced by each condition were assessed via questionnaire and autonomic signals were indexed via skin conductance. Participants with focal lesions to the bilateral frontal lobe, right insula/basal ganglia, and left medial temporal lobe showed reduced performance than individually matched healthy comparisons during the breathing and motor tasks. They also reported significantly higher anxiety during the 60-bpm regular and irregular breathing trials, with anxiety correlating with difficulty in rapid breathing specifically within this group. This study demonstrates that damage to frontal, temporal, or limbic regions is associated with abnormal voluntary respiratory and motor regulation and tachypnea-related anxiety, highlighting the role of the forebrain in affective and motor responses during breathing. Highlights: Impaired human respiratory regulation is associated with cortical/subcortical brain lesionsFrontolimbic/temporal regions contribute to rhythmic breathing and hand motor controlFrontolimbic/temporal damage is associated with anxiety during tachypnea/irregular breathingThe human forebrain is vital for affective and interoceptive experiences during breathing.

20.
Neuroimage Clin ; 42: 103610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38677099

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease with cognitive as well as motor impairments. While much is known about the brain networks leading to motor impairments in PD, less is known about the brain networks contributing to cognitive impairments. Here, we leveraged resting-state functional magnetic resonance imaging (rs-fMRI) data from the Parkinson's Progression Marker Initiative (PPMI) to examine network dysfunction in PD patients with cognitive impairment. We focus on canonical cortical networks linked to cognition, including the salience network (SAL), frontoparietal network (FPN), and default mode network (DMN), as well as a subcortical basal ganglia network (BGN). We used the Montreal Cognitive Assessment (MoCA) as a continuous index of coarse cognitive function in PD. In 82 PD patients, we found that lower MoCA scores were linked with lower intra-network connectivity of the FPN. We also found that lower MoCA scores were linked with lower inter-network connectivity between the SAL and the BGN, the SAL and the DMN, as well as the FPN and the DMN. These data elucidate the relationship of cortical and subcortical functional connectivity with cognitive impairments in PD.


Assuntos
Disfunção Cognitiva , Imageamento por Ressonância Magnética , Rede Nervosa , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/complicações , Masculino , Feminino , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem , Idoso , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA