RESUMO
BACKGROUND: The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. RESULTS: The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. CONCLUSIONS: The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control.
Assuntos
Besouros , Espécies Introduzidas , Animais , Besouros/genética , Genômica , Canadá , Itália , FilogeniaRESUMO
Toll-like receptors (TLR) are crucial components in the initiation of innate immune responses to a variety of pathogens, triggering the production of pro-inflammatory cytokines and type I and II interferons, which are responsible for innate antiviral responses. Among the different TLRs, TLR7 recognizes several single-stranded RNA viruses including SARS-CoV-2. We and others identified rare loss-of-function variants in X-chromosomal TLR7 in young men with severe COVID-19 and with no prior history of major chronic diseases, that were associated with impaired TLR7 signaling as well as type I and II IFN responses. Here, we performed RNA sequencing to investigate transcriptome variations following imiquimod stimulation of peripheral blood mononuclear cells isolated from patients carrying previously identified hypomorphic, hypofunctional, and loss-of-function TLR7 variants. Our investigation revealed a profound impairment of the TLR7 pathway in patients carrying loss-of-function variants. Of note, a failure in IFNγ upregulation following stimulation was also observed in cells harboring the hypofunctional and hypomorphic variants. We also identified new TLR7 variants in severely affected male patients for which a functional characterization of the TLR7 pathway was performed demonstrating a decrease in mRNA levels in the IFNα, IFNγ, RSAD2, ACOD1, IFIT2, and CXCL10 genes.
Assuntos
COVID-19 , Receptor 7 Toll-Like , Citocinas/metabolismo , Regulação para Baixo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , SARS-CoV-2 , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismoRESUMO
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.
Assuntos
COVID-19/genética , COVID-19/fisiopatologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Fenótipo , Índice de Gravidade de Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Alemanha , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Quebeque , SARS-CoV-2 , Suécia , Reino UnidoRESUMO
Intellectual disability (ID) is characterized by impairments in the cognitive processes and in the tasks of daily life. It encompasses a clinically and genetically heterogeneous group of neurodevelopmental disorders often associated with autism spectrum disorder (ASD). Social and communication abilities are strongly compromised in ASD. The prevalence of ID/ASD is 1-3%, and approximately 30% of the patients remain without a molecular diagnosis. Considering the extreme genetic locus heterogeneity, next-generation sequencing approaches have provided powerful tools for candidate gene identification. Molecular diagnosis is crucial to improve outcome, prevent complications, and hopefully start a therapeutic approach. Here, we performed parent-offspring trio whole-exome sequencing (WES) in a cohort of 60 mostly syndromic ID/ASD patients and we detected 8 pathogenic variants in genes already known to be associated with ID/ASD (SYNGAP1, SMAD6, PACS1, SHANK3, KMT2A, KCNQ2, ACTB, and POGZ). We found four de novo disruptive variants of four novel candidate ASD/ID genes: MBP, PCDHA1, PCDH15, PDPR. We additionally selected via bioinformatic tools many variants in unknown genes that alone or in combination can contribute to the phenotype. In conclusion, our data confirm the efficacy of WES in detecting pathogenic variants of known and novel ID/ASD genes.
Assuntos
Transtorno Autístico/genética , Sequenciamento do Exoma , Loci Gênicos , Predisposição Genética para Doença , Deficiência Intelectual/genética , Adolescente , Transtorno Autístico/patologia , Criança , Feminino , Humanos , Deficiência Intelectual/patologia , MasculinoRESUMO
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscle disease caused by an abnormal (GCN) triplet expansion within the polyadenylate-binding protein nuclear 1 gene and consequent mRNA processing impairment and myogenic defects. Because a reduced cell proliferation potential and the consequent regeneration failure of aging muscle have been shown to be governed by lethal-7 (let-7) microRNA-mediated mechanisms, in the present study, we evaluated the role of let-7 in the pathogenesis of OPMD. By a multidisciplinary approach, including confocal microscopy, Western blot, and quantitative PCR analyses on muscle biopsies from patients and unaffected individuals, we found a significant increase in let-7 expression in OPMD muscles associated with an unusual high percentage of paired box 7-positive satellite cells. Furthermore, IL-6, a cytokine involved in the regulation of satellite cell proliferation and differentiation and a potential target of let-7, was found strongly down-regulated in OPMD compared with control muscles. The decrease in IL-6 transcript levels and protein content was also confirmed in vitro during differentiation of patients' and controls' muscle cells. Overall, our data suggest a key role of let-7 in the regeneration and degeneration process in OPMD muscle and pointed to IL-6 as a potential target molecule for new therapeutic approaches for this disorder.-Cappelletti, C., Galbardi, B., Bruttini, M., Salerno, F., Canioni, E., Pasanisi, M. B., Rodolico, C., Brizzi, T., Mora, M., Renieri, A., Maggi, L., Bernasconi, P., Mantegazza, R. Aging-associated genes and let-7 microRNAs: a contribution to myogenic program dysregulation in oculopharyngeal muscular dystrophy.
Assuntos
Envelhecimento/genética , Predisposição Genética para Doença , MicroRNAs/genética , Distrofia Muscular Oculofaríngea/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Diferenciação Celular , Feminino , Regulação da Expressão Gênica/fisiologia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Desenvolvimento Muscular , Mioblastos/fisiologia , Miogenina/genética , Miogenina/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismoRESUMO
Retinoblastoma (RB), which represents the most common childhood eye cancer, is caused by biallelic inactivation of RB1 gene. Promoter hypermethylation is quite frequent in RB tissues but conclusive evidence of soma-wide predisposing epimutations is currently scant. Here, 50 patients who tested negative for RB1 germline sequence alterations were screened for aberrant promoter methylation using methylation-specific MLPA. The assay, performed on blood, identified a sporadic patient with methylation of CpG106, absent in parents' DNA. Bisulfite pyrosequencing accurately quantified CpG methylation in blood DNA (mean â¼49%) and also confirmed the aberration in DNA isolated from oral mucosa although at lower levels (mean â¼34%). Using a tag-SNP, methylation was demonstrated to affect the maternal allele. Real-time qPCR demonstrated RB1 transcriptional silencing. In conclusion, we documented that promoter methylation can act as the first "hit" in Knudson's model. This mosaic epimutation mimics the effect of an inactivating mutation and phenocopies RB onset.
Assuntos
Metilação de DNA/genética , Predisposição Genética para Doença , Proteínas de Ligação a Retinoblastoma/genética , Retinoblastoma/genética , Ubiquitina-Proteína Ligases/genética , Alelos , Epigênese Genética , Feminino , Inativação Gênica , Humanos , Lactente , Masculino , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Retinoblastoma/patologiaRESUMO
Recent expert guidelines recommend genetic testing for the diagnosis of Alport syndrome. Here, we describe current best practice and likely future developments. In individuals with suspected Alport syndrome, all three COL4A5, COL4A3 and COL4A4 genes should be examined for pathogenic variants, probably by high throughput-targeted next generation sequencing (NGS) technologies, with a customised panel for simultaneous testing of the three Alport genes. These techniques identify up to 95% of pathogenic COL4A variants. Where causative pathogenic variants cannot be demonstrated, the DNA should be examined for deletions or insertions by re-examining the NGS sequencing data or with multiplex ligation-dependent probe amplification (MLPA). These techniques identify a further 5% of variants, and the remaining few changes include deep intronic splicing variants or cases of somatic mosaicism. Where no pathogenic variants are found, the basis for the clinical diagnosis should be reviewed. Genes in which mutations produce similar clinical features to Alport syndrome (resulting in focal and segmental glomerulosclerosis, complement pathway disorders, MYH9-related disorders, etc.) should be examined. NGS approaches have identified novel combinations of pathogenic variants in Alport syndrome. Two variants, with one in COL4A3 and another in COL4A4, produce a more severe phenotype than an uncomplicated heterozygous change. NGS may also identify further coincidental pathogenic variants in genes for podocyte-expressed proteins that also modify the phenotype. Our understanding of the genetics of Alport syndrome is evolving rapidly, and both genetic and non-genetic factors are likely to contribute to the observed phenotypic variability.
Assuntos
Testes Genéticos , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Guias de Prática Clínica como Assunto , Autoantígenos/genética , Colágeno Tipo IV/genética , Consenso , Análise Mutacional de DNA , Testes Genéticos/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , FenótipoRESUMO
BACKGROUND: Alport syndrome is a clinically heterogeneous, progressive nephropathy caused by mutations in collagen IV genes, namely COL4A3 and COL4A4 on chromosome 2 and COL4A5 on chromosome X. The wide phenotypic variability and the presence of incomplete penetrance suggest that a simple Mendelian model cannot completely explain the genetic control of this disease. Therefore, we explored the possibility that Alport syndrome is under digenic control. METHODS: Using massively parallel sequencing, we identified 11 patients who had pathogenic mutations in two collagen IV genes. For each proband, we ascertained the presence of the same mutations in up to 12 members of the extended family for a total of 56 persons studied. RESULTS: Overall, 23 mutations were found. Individuals with two pathogenic mutations in different genes had a mean age of renal function deterioration intermediate with respect to the autosomal-dominant form and the autosomal-recessive one, in line with molecule stoichiometry of the disruption of the type IV collagen triple helix. CONCLUSIONS: Segregation analysis indicated three possible digenic segregation models: (i) autosomal inheritance with mutations on different chromosomes, resembling recessive inheritance (five families); (ii) autosomal inheritance with mutations on the same chromosome resembling dominant inheritance (two families) and (iii) unlinked autosomal and X-linked inheritance having a peculiar segregation (four families). This pedigree analysis provides evidence for digenic inheritance of Alport syndrome. Clinical geneticists and nephrologists should be aware of this possibility in order to more accurately assess inheritance probabilities, predict prognosis and identify other family members at risk.
Assuntos
Autoantígenos/genética , Colágeno Tipo IV/genética , Nefrite Hereditária/genética , Adulto , Idoso , Feminino , Estudos de Associação Genética , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Nefrite Hereditária/patologia , LinhagemRESUMO
The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways.
Assuntos
COVID-19 , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , SARS-CoV-2 , GenótipoRESUMO
Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.
Assuntos
COVID-19 , Cadeias beta de HLA-DP , Humanos , COVID-19/genética , SARS-CoV-2/genética , Alelos , Receptores KIR/genética , Genótipo , Autoanticorpos/genéticaRESUMO
BACKGROUND: Since the beginning of the anti-COVID-19 vaccination campaign, it has become evident that vaccinated subjects exhibit considerable inter-individual variability in the response to the vaccine that could be partly explained by host genetic factors. A recent study reported that the immune response elicited by the Oxford-AstraZeneca vaccine in individuals from the United Kingdom was influenced by a specific allele of the human leukocyte antigen gene HLA-DQB1. METHODS: We carried out a genome-wide association study to investigate the genetic determinants of the antibody response to the Pfizer-BioNTech vaccine in an Italian cohort of 1351 subjects recruited in three centers. Linear regressions between normalized antibody levels and genotypes of more than 7 million variants was performed, using sex, age, centers, days between vaccination boost and serological test, and five principal components as covariates. We also analyzed the association between normalized antibody levels and 204 HLA alleles, with the same covariates as above. RESULTS: Our study confirms the involvement of the HLA locus and shows significant associations with variants in HLA-A, HLA-DQA1, and HLA-DQB1 genes. In particular, the HLA-A*03:01 allele is the most significantly associated with serum levels of anti-SARS-CoV-2 antibodies. Other alleles, from both major histocompatibility complex class I and II are significantly associated with antibody levels. CONCLUSIONS: These results support the hypothesis that HLA genes modulate the response to Pfizer-BioNTech vaccine and highlight the need for genetic studies in diverse populations and for functional studies aimed to elucidate the relationship between HLA-A*03:01 and CD8+ cell response upon Pfizer-BioNTech vaccination.
It is known that people respond differently to vaccines. It has been proposed that differences in their genes might play a role. We studied the individual genetic makeup of 1351 people from Italy to see if there was a link between their genes and how well they responded to the BNT162b2 mRNA COVID-19 vaccine. We discovered certain genetic differences linked to higher levels of protection in those who got the vaccine. Our findings suggest that individual's genetic characteristics play a role in vaccine response. A larger population involving diverse ethnic backgrounds will need to be studied to confirm the generalizability of these findings. Better understanding of this could facilitate improved vaccine designs against new SARS-CoV-2 variants.
RESUMO
X-linked mental retardation (XLMR) is an inherited condition that causes failure to develop cognitive abilities, owing to mutations in a gene on the X chromosome. The latest XLMR update lists up to 136 conditions leading to 'syndromic', or 'specific', mental retardation (MRXS) and 66 entries leading to 'nonspecific' mental retardation (MRX). For 9 of the 66 MRX entries, the causative gene has been identified. Our recent discovery of the contiguous gene deletion syndrome ATS-MR (previously known as Alport syndrome, mental retardation, midface hypoplasia, elliptocytosis, OMIM #300194), characterized by Alport syndrome (ATS) and mental retardation (MR), indicated Xq22.3 as a region containing one mental retardation gene. Comparing the extent of deletion between individuals with ATS-MR and individuals with ATS alone allowed us to define a critical region for mental retardation of approximately 380 kb, containing four genes. Here we report the identification of two point mutations, one missense and one splice-site change, in the gene FACL4 in two families with nonspecific mental retardation. Analysis of enzymatic activity in lymphoblastoid cell lines from affected individuals of both families revealed low levels compared with normal cells, indicating that both mutations are null mutations. All carrier females with either point mutations or genomic deletions in FACL4 showed a completely skewed X-inactivation, suggesting that the gene influences survival advantage. FACL4 is the first gene shown to be involved in nonspecific mental retardation and fatty-acid metabolism.
Assuntos
Coenzima A Ligases/genética , Coenzima A Ligases/fisiologia , Ligação Genética , Deficiência Intelectual/genética , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Cromossomo X , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cerebelo/metabolismo , Criança , Pré-Escolar , Coenzima A Ligases/metabolismo , Éxons , Saúde da Família , Feminino , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Linhagem , Mutação Puntual , Polimorfismo Conformacional de Fita Simples , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido NucleicoRESUMO
[This corrects the article DOI: 10.3389/fgene.2021.761264.].
RESUMO
BACKGROUND: Chromosome 4q deletions are rare disorders phenotypically characterized by several features. The most commonly described ocular abnormalities include unilateral microphthalmia with bilateral colobomata, blue sclerae with pigmented retinal clumps, hypermetropia, and a divergent squint. PURPOSE: To report a case of 4q12 deletion with a singular retinal feature. MATERIALS AND METHODS: Case report. RESULTS: A 20-year-old Caucasian female with a history of poliosis, progressive appearance of small areas of skin depigmentation along trunk and limbs since birth and diagnosis of learning deficit was referred for a complete ocular examination. The genetic counseling showed microdeletion in the 4q12 region. An audiometric test was performed, showing a progressive bilateral neurosensorial hypoacusia. Ocular examination showed the presence of multifocal, tiny, whitish deposits in the posterior pole. Multimodal imaging defined the lesions as small elevations of the retinal pigment epithelium with slight hyper-autofluorescence and staining in the late phase of fluoresceine angiography (FA). Visual acuity was 20/20. The retinal findings did not change during the three-month follow-up. CONCLUSIONS: Although the findings herein reported have never been described before in patients affected by 4q12 mutations, we do not exclude that they could represent a manifestation of the peculiar genetic asset of the patient, related to dysfunction in pigment epithelium/neuroretinal metabolic activity.
Assuntos
Retina , Tomografia de Coerência Óptica , Adulto , Deleção Cromossômica , Feminino , Angiofluoresceinografia/métodos , Humanos , Imagem Multimodal , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Adulto JovemRESUMO
Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19.
Assuntos
COVID-19 , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Alelos , Fibrose Cística/patologia , COVID-19/genética , HeterozigotoRESUMO
Alport syndrome (ATS) is a nephropathy characterized by the association of progressive hematuric nephritis with ultrastructural changes of the glomerular basement membrane (thinning, thickening, and splitting), sensorineural deafness, and variable ocular abnormalities (anterior lenticonus, macular flecks, and cataracts). The most common mode of transmission is X-linked inheritance, due to COL4A5 mutations. X-linked ATS is rarely associated with diffuse leiomyomatosis (DL), a benign hypertrophy of the visceral smooth muscle in gastrointestinal, respiratory, and female reproductive tracts. The ATS-DL complex is due to deletions that encompass the 5' ends of the COL4A5 and COL4A6 genes and include the bidirectional promoter. In this paper, we described 3 ATS-DL cases, 2 familial and 1 sporadic bearing a deletion encompassing the 5'-end of both the COL4A5 and COL4A6 genes, as identified by multiplex ligation-dependent probe amplification (MLPA) analysis. The array-CGH technique allowed a better definition of deletion size, confirming that the proximal breakpoint was within COL4A6 intron 2 in 2 cases. Surprisingly, 1 case had a deletion extending proximally beyond exon 3 of COL4A6, as confirmed by qPCR analysis. This is the largest deletion reported to date that has been associated with ATS-DL and this case should lead us to reconsider the mechanisms that might be involved in the development of diffuse leiomyomatosis.
Assuntos
Sequência de Bases/genética , Colágeno Tipo IV/genética , Deleção de Sequência/genética , Adulto , Criança , Hibridização Genômica Comparativa , Feminino , Humanos , Íntrons/genética , Leiomiomatose , Masculino , Dados de Sequência Molecular , Nefrite Hereditária/genética , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto JovemRESUMO
Genetic conditions comprise a wide spectrum of different phenotypes, rapidly expanding due to new diagnostic methodologies. Patients' facial features and clinical history represent the key elements leading clinicians to the right diagnosis. CDKL5-early onset epilepsy and Pitt-Hopkins syndrome are two well-known genetic conditions, with a defined phenotype sharing some common characteristics like early-onset epilepsy and hyperventilation episodes. Whilst facial features represent a diagnostic handle in patients with Pitt-Hopkins syndrome, clinical history is crucial in patients carrying a mutation in CDKL5. Here we present the clinical case of a girl evaluated for the first time when she was 24-years old, with a clinical phenotype mimicking Pitt-Hopkins syndrome. Her facial features have become coarser while she was growing up, leading geneticists to raise different clinical hypotheses and to perform several molecular tests before getting the diagnosis of CDKL5-early-epileptic encephalopathy. This finding highlights that although typical facial gestalt has not so far extensively been described in CDKL5 mutated adult patients, peculiar facial features could be present later in life and may let CDKL5-related disorder mimic Pitt Hopkins. Thus, considering atypical Rett syndrome in the differential diagnosis of Pitt Hopkins syndrome could be important to solve complex clinical cases.
Assuntos
Epilepsia/genética , Hiperventilação/diagnóstico , Deficiência Intelectual/diagnóstico , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Adulto , Diagnóstico Diferencial , Epilepsia/patologia , Fácies , Feminino , Humanos , Hiperventilação/genética , Deficiência Intelectual/genéticaRESUMO
Spondyloocular syndrome (SOS) is a skeletal disorder caused by pathogenic variants in XYLT2 gene encoding a xylotransferase involved in the biosynthesis of proteoglycans. This condition, with autosomal recessive inheritance, has a high phenotypic variability. It is characterized by bone abnormalities (osteoporosis, fractures), eye and cardiac defects, hearing impairment, and varying degrees of developmental delay. Until now only 20 mutated individuals have been reported worldwide. Here, we describe two siblings from consanguineous healthy parents in which a novel homozygous frameshift variant c.1586dup p(Thr530Hisfs*) in the XYLT2 gene was detected by exome sequencing (ES). The first patient (9 years) presented short stature with skeletal defects, long face, hearing loss and cataract. The second patient, evaluated at a few days of life, showed macrosomia, diffuse hypertrichosis on the back, overabundant skin in the retronucal area, flattened facial profile with drooping cheeks, elongated eyelid rims, wide and flattened nasal bridge and turned down corners of the mouth. During the prenatal period, high nuchal translucency and intestinal hyperechogenicity were observed at ultrasound. In conclusion, these two siblings with a novel pathogenic variant in XYLT2 further expand the clinical and mutational spectrum of SOS.
RESUMO
Within the GEN-COVID Multicenter Study, biospecimens from more than 1000 SARS-CoV-2 positive individuals have thus far been collected in the GEN-COVID Biobank (GCB). Sample types include whole blood, plasma, serum, leukocytes, and DNA. The GCB links samples to detailed clinical data available in the GEN-COVID Patient Registry (GCPR). It includes hospitalized patients (74.25%), broken down into intubated, treated by CPAP-biPAP, treated with O2 supplementation, and without respiratory support (9.5%, 18.4%, 31.55% and 14.8, respectively); and non-hospitalized subjects (25.75%), either pauci- or asymptomatic. More than 150 clinical patient-level data fields have been collected and binarized for further statistics according to the organs/systems primarily affected by COVID-19: heart, liver, pancreas, kidney, chemosensors, innate or adaptive immunity, and clotting system. Hierarchical clustering analysis identified five main clinical categories: (1) severe multisystemic failure with either thromboembolic or pancreatic variant; (2) cytokine storm type, either severe with liver involvement or moderate; (3) moderate heart type, either with or without liver damage; (4) moderate multisystemic involvement, either with or without liver damage; (5) mild, either with or without hyposmia. GCB and GCPR are further linked to the GCGDR, which includes data from whole-exome sequencing and high-density SNP genotyping. The data are available for sharing through the Network for Italian Genomes, found within the COVID-19 dedicated section. The study objective is to systematize this comprehensive data collection and begin identifying multi-organ involvement in COVID-19, defining genetic parameters for infection susceptibility within the population, and mapping genetically COVID-19 severity and clinical complexity among patients.