Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1862(6): 1432-1442, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29571746

RESUMO

BACKGROUND: Many data highlight the benefits of the Mediterranean diet and its main lipid component, extra-virgin olive oil (EVOO). EVOO contains many phenolic compounds that have been found effective against several aging- and lifestyle-related diseases, including neurodegeneration. Oleuropein, a phenolic secoiroid glycoside, is the main polyphenol in the olive oil. It has been reported that the aglycone form of Oleuropein (OleA) interferes in vitro and in vivo with amyloid aggregation of a number of proteins/peptides involved in amyloid, particularly neurodegenerative, diseases avoiding the growth of toxic oligomers and displaying protection against cognitive deterioration. METHODS: In this study, we carried out a cellular and biophysical study on the relationships between the effects of OleA on the aggregation and cell interactions of the D76N ß2-microglobulin (D76N b2m) variant associated with a familial form of systemic amyloidosis with progressive bowel dysfunction and extensive visceral amyloid deposits. RESULTS: Our results indicate that OleA protection against D76N b2m cytotoxicity results from i) a modification of the conformational and biophysical properties of its amyloid fibrils; ii) a modification of the cell bilayer surface properties of exposed cells. CONCLUSIONS: This study reveals that OleA remodels not only D76N b2m aggregates but also the cell membrane interfering with the misfolded proteins-cell membrane association, in most cases an early event triggering amyloid-mediated cytotoxicity. GENERAL SIGNIFICANCE: The data provided in the present article focus on OleA protection, featuring this polyphenol as a promising plant molecule useful against amyloid diseases.


Assuntos
Acetatos/farmacologia , Amiloide/efeitos adversos , Amiloidose/prevenção & controle , Apoptose/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Piranos/farmacologia , Amiloidose/metabolismo , Amiloidose/patologia , Monoterpenos Ciclopentânicos , Humanos , Membranas Artificiais , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Células Tumorais Cultivadas , Microglobulina beta-2/metabolismo
2.
Food Chem Toxicol ; 129: 1-12, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30995514

RESUMO

Oleuropein aglycone (OleA), the most abundant polyphenol in extra virgin olive oil (EVOO), and Hydroxythyrosol (HT), the OleA main metabolite, have attracted our interest due to their multitarget effects, including the interference with amyloid aggregation path. However, the mechanistic details of their anti-amyloid effect are not known yet. We report here a broad biophysical approach and cell biology techniques that enabled us to characterize the different molecular mechanisms by which OleA and HT modulate the Aß1-42 fibrillation, a main histopathological feature of Alzheimer's disease (AD). In particular, OleA prevents the growth of toxic Aß1-42 oligomers and blocks their successive growth into mature fibrils following its interaction with the peptide N-terminus, while HT speeds up harmless fibril formation. Our data demonstrate that, by stabilizing oligomers and fibrils, both polyphenols reduce their seeding activity and aggregate/membrane interaction on human neuroblastoma SH-SY5Y cells. These findings highlight the great potential of EVOO polyphenols and offer the possibility to validate and to optimize their use for possible AD prevention and therapy.


Assuntos
Acetatos/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Fragmentos de Peptídeos/antagonistas & inibidores , Álcool Feniletílico/análogos & derivados , Piranos/farmacologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Fenômenos Biofísicos , Linhagem Celular Tumoral , Monoterpenos Ciclopentânicos , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Álcool Feniletílico/farmacologia
3.
Sci Rep ; 8(1): 8337, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844450

RESUMO

α-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD); its deposits are found as amyloid fibrils in Lewy bodies and Lewy neurites, the histopathological hallmarks of PD. Amyloid fibrillation is a progressive polymerization path starting from peptide/protein misfolding and proceeding through the transient growth of oligomeric intermediates widely considered as the most toxic species. Consequently, a promising approach of intervention against PD might be preventing α-synuclein build-up, misfolding and aggregation. A possible strategy involves the use of small molecules able to slow down the aggregation process or to alter oligomer conformation favouring the growth of non-pathogenic species. Here, we show that oleuropein aglycone (OleA), the main olive oil polyphenol, exhibits anti-amyloidogenic power in vitro by interacting with, and stabilizing, α-synuclein monomers thus hampering the growth of on-pathway oligomers and favouring the growth of stable and harmless aggregates with no tendency to evolve into other cytotoxic amyloids. We investigated the molecular basis of such interference by both biophysical techniques and limited proteolysis; aggregate morphology was monitored by electron microscopy. We also found that OleA reduces the cytotoxicity of α-synuclein aggregates by hindering their binding to cell membrane components and preventing the resulting oxidative damage to cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA