Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Cell ; 184(11): 3056-3074.e21, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33932339

RESUMO

The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1ß (IL-1ß) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.


Assuntos
Plexo Corióideo/embriologia , Plexo Corióideo/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Encefalopatias/genética , Encefalopatias/fisiopatologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Plexo Corióideo/fisiologia , Células Epiteliais/metabolismo , Feminino , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única
2.
Cell ; 150(3): 533-48, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863007

RESUMO

Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina, and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as "ciliopathies." However, disease mechanisms remain poorly understood. Here, we identify by whole-exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164, and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. Our findings link degenerative diseases of the kidney and retina, disorders of increasing prevalence, to mechanisms of DDR.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Exoma , Doenças Renais Císticas/genética , Proteínas dos Microtúbulos/metabolismo , Animais , Cílios/metabolismo , Técnicas de Silenciamento de Genes , Genes Recessivos , Humanos , Proteína Homóloga a MRE11 , Camundongos , Proteínas , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
3.
J Biol Chem ; 300(7): 107407, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38796065

RESUMO

Members of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/ß-catenin pathway, which promotes the degradation of ß-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function. In this study, we show that the deletion of CK1α, but not CK1α-like, resulted in a strong activation of the Wnt/ß-catenin pathway. Wnt-3a treatment further enhanced the activation, which suggests there are at least two modes, a CK1α-dependent and Wnt-dependent, of ß-catenin regulation. Rescue experiments showed that only two out of ten naturally occurring splice CK1α/α-like variants were able to rescue the augmented Wnt/ß-catenin signaling caused by CK1α deficiency in cells. Importantly, the ability to phosphorylate ß-catenin on Ser45 in the in vitro kinase assay was required but not sufficient for such rescue. Our compound CK1α and GSK3α/ß KO models suggest that the additional nonredundant function of CK1α in the Wnt pathway beyond Ser45-ß-catenin phosphorylation includes Axin phosphorylation. Finally, we established NanoBRET assays for the three most common CK1α splice variants as well as CK1α-like. Target engagement data revealed comparable potency of known CK1α inhibitors for all CK1α variants but not for CK1α-like. In summary, our work brings important novel insights into the biology of CK1α, including evidence for the lack of redundancy with other CK1 kinases in the negative regulation of the Wnt/ß-catenin pathway at the level of ß-catenin and Axin.

4.
Semin Cell Dev Biol ; 125: 26-36, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34896020

RESUMO

Wnt signalling is known to generate cellular asymmetry via Wnt/planar cell polarity pathway (Wnt/PCP). Wnt/PCP acts locally (i) to orient membrane polarity and asymmetric establishment of intercellular junctions via conserved set of PCP proteins most specifically represented by Vangl and Prickle, and (ii) to asymmetrically rearrange cytoskeletal structures via downstream effectors of Dishevelled (Dvl). This process is best described on stable phenotypes of epithelial cells. Here, however, we review the activity of Wnt signalling in migratory cells which experience the extensive rearrangements of cytoskeleton and consequently dynamic asymmetry, making the localised effects of Wnt signalling easier to distinguish. Firstly, we focused on migration of neuronal axons, which allows to study how the pre-existent cellular asymmetry can influence Wnt signalling outcome. Then, we reviewed the role of Wnt signalling in models of mesenchymal migration including neural crest, melanoma, and breast cancer cells. Last, we collected evidence for local Wnt signalling in amoeboid cells, especially lymphocytes. As the outcome of this review, we identify blank spots in our current understanding of this topic, propose models that synthesise the current observations and allow formulation of testable hypotheses for the future research.


Assuntos
Polaridade Celular , Via de Sinalização Wnt , Animais , Polaridade Celular/fisiologia , Células Epiteliais , Crista Neural , Vertebrados , Via de Sinalização Wnt/fisiologia
5.
EMBO J ; 39(18): e103932, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32965059

RESUMO

Wnt/ß-catenin signaling is a primary pathway for stem cell maintenance during tissue renewal and a frequent target for mutations in cancer. Impaired Wnt receptor endocytosis due to loss of the ubiquitin ligase RNF43 gives rise to Wnt-hypersensitive tumors that are susceptible to anti-Wnt-based therapy. Contrary to this paradigm, we identify a class of RNF43 truncating cancer mutations that induce ß-catenin-mediated transcription, despite exhibiting retained Wnt receptor downregulation. These mutations interfere with a ubiquitin-independent suppressor role of the RNF43 cytosolic tail that involves Casein kinase 1 (CK1) binding and phosphorylation. Mechanistically, truncated RNF43 variants trap CK1 at the plasma membrane, thereby preventing ß-catenin turnover and propelling ligand-independent target gene transcription. Gene editing of human colon stem cells shows that RNF43 truncations cooperate with p53 loss to drive a niche-independent program for self-renewal and proliferation. Moreover, these RNF43 variants confer decreased sensitivity to anti-Wnt-based therapy. Our data demonstrate the relevance of studying patient-derived mutations for understanding disease mechanisms and improved applications of precision medicine.


Assuntos
Caseína Quinase I/metabolismo , Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Caseína Quinase I/genética , Células HEK293 , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , beta Catenina/genética , beta Catenina/metabolismo
6.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032267

RESUMO

The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.


Assuntos
Plexo Corióideo/embriologia , Epitélio/metabolismo , Quarto Ventrículo/embriologia , Proteína Meis1/metabolismo , Proteína Wnt-5a/metabolismo , Animais , Encéfalo/embriologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais/fisiologia , Proteína Wnt-5a/genética
7.
Development ; 147(10)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32366678

RESUMO

Directional migration during embryogenesis and tumor progression faces the challenge that numerous external signals need to converge to precisely control cell movement. The Rho guanine exchange factor (GEF) Trio is especially well suited to relay signals, as it features distinct catalytic domains to activate Rho GTPases. Here, we show that Trio is required for Xenopus cranial neural crest (NC) cell migration and cartilage formation. Trio cell-autonomously controls protrusion formation of NC cells and Trio morphant NC cells show a blebbing phenotype. Interestingly, the Trio GEF2 domain is sufficient to rescue protrusion formation and migration of Trio morphant NC cells. We show that this domain interacts with the DEP/C-terminus of Dishevelled (DVL). DVL - but not a deletion construct lacking the DEP domain - is able to rescue protrusion formation and migration of Trio morphant NC cells. This is likely mediated by activation of Rac1, as we find that DVL rescues Rac1 activity in Trio morphant embryos. Thus, our data provide evidence for a novel signaling pathway, whereby Trio controls protrusion formation of cranial NC cells by interacting with DVL to activate Rac1.


Assuntos
Movimento Celular/genética , Proteínas Desgrenhadas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Crista Neural/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Proteínas Desgrenhadas/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Crista Neural/embriologia , Fenótipo , Plasmídeos/genética , Ligação Proteica/genética , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Transfecção , Proteínas de Xenopus/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Cell Mol Life Sci ; 79(6): 304, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589983

RESUMO

The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.


Assuntos
Sistema Nervoso Central , Plexo Corióideo , Animais , Encéfalo , Plexo Corióideo/fisiologia , Células Epiteliais , Camundongos
9.
Angew Chem Int Ed Engl ; 62(11): e202217532, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625768

RESUMO

Casein kinases 1 (CK1) are key signaling molecules that have emerged recently as attractive therapeutic targets in particular for the treatment of hematological malignancies. Herein, we report the identification of a new class of potent and highly selective inhibitors of CK1α, δ and ϵ. Based on their optimal in vitro and in vivo profiles and their exclusive selectivity, MU1250, MU1500 and MU1742 were selected as quality chemical probes for those CK1 isoforms. At proper concentrations, MU1250 and MU1500 allow for specific targeting of CK1δ or dual inhibition of CK1δ/ϵ in cells. The compound MU1742 also efficiently inhibits CK1α and, to our knowledge, represents the first potent and highly selective inhibitor of this enzyme. In addition, we demonstrate that the central 1H-pyrrolo[2,3-b]pyridine-imidazole pharmacophore can be used as the basis of highly selective inhibitors of other therapeutically relevant protein kinases, e.g. p38α, as exemplified by the compound MU1299.


Assuntos
Caseína Quinase I , Transdução de Sinais , Caseína Quinase I/metabolismo , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Humanos
10.
Handb Exp Pharmacol ; 269: 117-135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34382124

RESUMO

Dishevelled (DVL) is the central signal transducer in both Wnt/ß-catenin-dependent and independent signalling pathways. DVL is required to connect receptor complexes and downstream effectors. Since proximal Wnt pathway components and DVL itself are upregulated in many types of cancer, DVL represents an attractive therapeutic target in the Wnt-addicted cancers and other disorders caused by aberrant Wnt signalling. Here, we discuss progress in several approaches for the modulation of DVL function and hence inhibition of the Wnt signalling. Namely, we sum up the potential of modulation of enzymes that control post-translational modification of DVL - such as inhibition of DVL kinases or promotion of DVL ubiquitination and degradation. In addition, we discuss research directions that can take advantage of direct interaction with the protein domains essential for DVL function: the inhibition of DIX- and DEP-domain mediated polymerization and interaction of DVL PDZ domain with its ligands.


Assuntos
Proteínas Desgrenhadas , Fosfoproteínas , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Desgrenhadas/metabolismo , Humanos , Fosfoproteínas/metabolismo
11.
PLoS Genet ; 14(12): e1007840, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532125

RESUMO

Van Gogh-like (Vangl) and Prickle (Pk) are core components of the non-canonical Wnt planar cell polarity pathway that controls epithelial polarity and cell migration. Studies in vertebrate model systems have suggested that Vangl and Pk may also inhibit signaling through the canonical Wnt/ß-catenin pathway, but the functional significance of this potential cross-talk is unclear. In the nematode C. elegans, the Q neuroblasts and their descendants migrate in opposite directions along the anteroposterior body axis. The direction of these migrations is specified by Wnt signaling, with activation of canonical Wnt signaling driving posterior migration, and non-canonical Wnt signaling anterior migration. Here, we show that the Vangl ortholog VANG-1 influences the Wnt signaling response of the Q neuroblasts by negatively regulating canonical Wnt signaling. This inhibitory activity depends on a carboxy-terminal PDZ binding motif in VANG-1 and the Dishevelled ortholog MIG-5, but is independent of the Pk ortholog PRKL-1. Moreover, using Vangl1 and Vangl2 double mutant cells, we show that a similar mechanism acts in mammalian cells. We conclude that cross-talk between VANG-1/Vangl and the canonical Wnt pathway is an evolutionarily conserved mechanism that ensures robust specification of Wnt signaling responses.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Fosfoproteínas/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Padronização Corporal/fisiologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem da Célula , Polaridade Celular/genética , Polaridade Celular/fisiologia , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Genes de Helmintos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fosfoproteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
13.
Blood ; 131(11): 1206-1218, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29317454

RESUMO

Casein kinase 1δ/ε (CK1δ/ε) is a key component of noncanonical Wnt signaling pathways, which were shown previously to drive pathogenesis of chronic lymphocytic leukemia (CLL). In this study, we investigated thoroughly the effects of CK1δ/ε inhibition on the primary CLL cells and analyzed the therapeutic potential in vivo using 2 murine model systems based on the Eµ-TCL1-induced leukemia (syngeneic adoptive transfer model and spontaneous disease development), which resembles closely human CLL. We can demonstrate that the CK1δ/ε inhibitor PF-670462 significantly blocks microenvironmental interactions (chemotaxis, invasion and communication with stromal cells) in primary CLL cells in all major subtypes of CLL. In the mouse models, CK1 inhibition slows down accumulation of leukemic cells in the peripheral blood and spleen and prevents onset of anemia. As a consequence, PF-670462 treatment results in a significantly longer overall survival. Importantly, CK1 inhibition has synergistic effects to the B-cell receptor (BCR) inhibitors such as ibrutinib in vitro and significantly improves ibrutinib effects in vivo. Mice treated with a combination of PF-670462 and ibrutinib show the slowest progression of disease and survive significantly longer compared with ibrutinib-only treatment when the therapy is discontinued. In summary, this preclinical testing of CK1δ/ε inhibitor PF-670462 demonstrates that CK1 may serve as a novel therapeutic target in CLL, acting in synergy with BCR inhibitors. Our work provides evidence that targeting CK1 can represent an alternative or addition to the therapeutic strategies based on BCR signaling and antiapoptotic signaling (BCL-2) inhibition.


Assuntos
Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase Idelta/antagonistas & inibidores , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Animais , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/genética , Caseína Quinase Idelta/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Piperidinas
14.
Cell Commun Signal ; 18(1): 91, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527265

RESUMO

BACKGROUND: RNF43 and its homolog ZNRF3 are transmembrane E3 ubiquitin ligases frequently mutated in many human cancer types. Their main role relays on the inhibition of canonical Wnt signaling by the negative regulation of frizzled receptors and LRP5/6 co-receptors levels at the plasma membrane. Intracellular RING domains of RNF43/ZNRF3 mediate the key enzymatic activity of these proteins, but the function of the extracellular Protease Associated (PA) fold in the inhibition of Wnt/ß-catenin pathway is controversial up-to date, apart from the interaction with secreted antagonists R-spondin family proteins shown by the crystallographic studies. METHODS: In our research we utilised cell-based approaches to study the role of RNF43 lacking PA domain in the canonical Wnt signalling pathway transduction. We developed controlled overexpression (TetON) and CRISPR/Cas9 mediated knock-out models in human cells. RESULTS: RNF43ΔPA mutant activity impedes canonical Wnt pathway, as manifested by the reduced phosphorylation of LRP6, DVL2 and DVL3 and by the decreased ß-catenin-dependent gene expression. Finally, rescue experiments in the CRISPR/Cas9 derived RNF43/ZNRF3 double knock-out cell lines showed that RNFΔPA overexpression is enough to inhibit activation of LRP6 and ß-catenin activity as shown by the Western blot and Top flash dual luciferase assays. Moreover, RNF43 variant without PA domain was not sensitive to the R-spondin1 treatment. CONCLUSION: Taken together, our results help to understand better the mode of RNF43 tumor suppressor action and solve some discrepancies present in the field. Video Abstract.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Trombospondinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Células HEK293 , Humanos , Mutação , Domínios Proteicos , Ubiquitina-Proteína Ligases/genética
15.
Int J Mol Sci ; 21(13)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635478

RESUMO

Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment-in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP-CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.


Assuntos
Plexo Corióideo/metabolismo , Transdução de Sinais/fisiologia , Animais , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Humanos
16.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261128

RESUMO

The casein kinase 1 enzymes (CK1) form a family of serine/threonine kinases with seven CK1 isoforms identified in humans. The most important substrates of CK1 kinases are proteins that act in the regulatory nodes essential for tumorigenesis of hematological malignancies. Among those, the most important are the functions of CK1s in the regulation of Wnt pathways, cell proliferation, apoptosis and autophagy. In this review we summarize the recent developments in the understanding of biology and therapeutic potential of the inhibition of CK1 isoforms in the pathogenesis of chronic lymphocytic leukemia (CLL), other non-Hodgkin lymphomas (NHL), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and multiple myeloma (MM). CK1δ/ε inhibitors block CLL development in preclinical models via inhibition of WNT-5A/ROR1-driven non-canonical Wnt pathway. While no selective CK1 inhibitors have reached clinical stage to date, one dual PI3Kδ and CK1ε inhibitor, umbralisib, is currently in clinical trials for CLL and NHL patients. In MDS, AML and MM, inhibition of CK1α, acting via activation of p53 pathway, showed promising preclinical activities and the first CK1α inhibitor has now entered the clinical trials.


Assuntos
Caseína Quinase I/metabolismo , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/enzimologia , Terapia de Alvo Molecular , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Caseína Quinase I/antagonistas & inibidores , Caseína Quinase I/química , Neoplasias Hematológicas/patologia , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Via de Sinalização Wnt
17.
Crit Rev Biochem Mol Biol ; 52(6): 614-637, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28741966

RESUMO

Wnt signaling cascade has developed together with multicellularity to orchestrate the development and homeostasis of complex structures. Wnt pathway components - such as ß-catenin, Dishevelled (DVL), Lrp6, and Axin-- are often dedicated proteins that emerged in evolution together with the Wnt signaling cascade and are believed to function primarily in the Wnt cascade. It is interesting to see that in recent literature many of these proteins are connected with cellular functions that are more ancient and not limited to multicellular organisms - such as cell cycle regulation, centrosome biology, or cell division. In this review, we summarize the recent literature describing this crosstalk. Specifically, we attempt to find the answers to the following questions: Is the response to Wnt ligands regulated by the cell cycle? Is the centrosome and/or cilium required to activate the Wnt pathway? How do Wnt pathway components regulate the centrosomal cycle and cilia formation and function? We critically review the evidence that describes how these connections are regulated and how they help to integrate cell-to-cell communication with the cell and the centrosomal cycle in order to achieve a fine-tuned, physiological response.


Assuntos
Ciclo Celular , Centrossomo/metabolismo , Via de Sinalização Wnt , Animais , Comunicação Celular , Polaridade Celular , Humanos
18.
J Biol Chem ; 293(42): 16337-16347, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30166345

RESUMO

Intrinsically disordered regions (IDRs) are protein regions that lack persistent secondary or tertiary structure under native conditions. IDRs represent >40% of the eukaryotic proteome and play a crucial role in protein-protein interactions. The classical approach for identification of these interaction interfaces is based on mutagenesis combined with biochemical techniques such as coimmunoprecipitation or yeast two-hybrid screening. This approach either provides information of low resolution (large deletions) or very laboriously tries to precisely define the binding epitope via single amino acid substitutions. Here, we report the use of a peptide microarray based on the human scaffold protein AXIN1 for high-throughput and -resolution mapping of binding sites for several AXIN1 interaction partners in vitro For each of the AXIN1-binding partners tested, i.e. casein kinase 1 ϵ (CK1ϵ); c-Myc; peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (Pin1); and p53, we found at least three different epitopes, predominantly in the central IDR of AXIN1. We functionally validated the specific AXIN1-CK1ϵ interaction identified here with epitope-mimicking peptides and with AXIN1 variants having deletions of short binding epitopes. On the basis of these results, we propose a model in which AXIN1 competes with dishevelled (DVL) for CK1ϵ and regulates CK1ϵ-induced phosphorylation of DVL and activation of Wnt/ß-catenin signaling.


Assuntos
Proteína Axina/metabolismo , Caseína Quinase 1 épsilon/metabolismo , Peptídeos/metabolismo , Análise Serial de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Sítios de Ligação , Ligação Competitiva , Proteínas Desgrenhadas/metabolismo , Humanos , Fosforilação , Ligação Proteica , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
19.
J Biol Chem ; 293(48): 18477-18493, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309985

RESUMO

Frizzleds (FZDs) are receptors for secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, initiating an important signal transduction network in multicellular organisms. FZDs are G protein-coupled receptors (GPCRs), which are well known to be regulated by phosphorylation, leading to specific downstream signaling or receptor desensitization. The role and underlying mechanisms of FZD phosphorylation remain largely unexplored. Here, we investigated the phosphorylation of human FZD6 Using MS analysis and a phospho-state- and -site-specific antibody, we found that Ser-648, located in the FZD6 C terminus, is efficiently phosphorylated by casein kinase 1 ϵ (CK1ϵ) and that this phosphorylation requires the scaffolding protein Dishevelled (DVL). In an overexpression system, DVL1, -2, and -3 promoted CK1ϵ-mediated FZD6 phosphorylation on Ser-648. This DVL activity required an intact DEP domain and FZD-mediated recruitment of this domain to the cell membrane. Substitution of the CK1ϵ-targeted phosphomotif reduced FZD6 surface expression, suggesting that Ser-648 phosphorylation controls membrane trafficking of FZD6 Phospho-Ser-648 FZD6 immunoreactivity in human fallopian tube epithelium was predominantly apical, associated with cilia in a subset of epithelial cells, compared with the total FZD6 protein expression, suggesting that FZD6 phosphorylation contributes to asymmetric localization of receptor function within the cell and to epithelial polarity. Given the key role of FZD6 in planar cell polarity, our results raise the possibility that asymmetric phosphorylation of FZD6 rather than asymmetric protein distribution accounts for polarized receptor signaling.


Assuntos
Caseína Quinase I/metabolismo , Proteínas Desgrenhadas/fisiologia , Receptores Frizzled/metabolismo , Sequência de Aminoácidos , Anticorpos/imunologia , Membrana Celular/metabolismo , Proteínas Desgrenhadas/química , Epitélio/metabolismo , Tubas Uterinas/metabolismo , Feminino , Receptores Frizzled/química , Células HEK293 , Humanos , Espectrometria de Massas , Fosfoproteínas/imunologia , Fosforilação , Serina/metabolismo , Transdução de Sinais
20.
Gastroenterology ; 154(4): 1080-1095, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29162437

RESUMO

BACKGROUND & AIMS: Alagille syndrome is a genetic disorder characterized by cholestasis, ocular abnormalities, characteristic facial features, heart defects, and vertebral malformations. Most cases are associated with mutations in JAGGED1 (JAG1), which encodes a Notch ligand, although it is not clear how these contribute to disease development. We aimed to develop a mouse model of Alagille syndrome to elucidate these mechanisms. METHODS: Mice with a missense mutation (H268Q) in Jag1 (Jag1+/Ndr mice) were outbred to a C3H/C57bl6 background to generate a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice). Liver tissues were collected at different timepoints during development, analyzed by histology, and liver organoids were cultured and analyzed. We performed transcriptome analysis of Jag1Ndr/Ndr livers and livers from patients with Alagille syndrome, cross-referenced to the Human Protein Atlas, to identify commonly dysregulated pathways and biliary markers. We used species-specific transcriptome separation and ligand-receptor interaction assays to measure Notch signaling and the ability of JAG1Ndr to bind or activate Notch receptors. We studied signaling of JAG1 and JAG1Ndr via NOTCH 1, NOTCH2, and NOTCH3 and resulting gene expression patterns in parental and NOTCH1-expressing C2C12 cell lines. RESULTS: Jag1Ndr/Ndr mice had many features of Alagille syndrome, including eye, heart, and liver defects. Bile duct differentiation, morphogenesis, and function were dysregulated in newborn Jag1Ndr/Ndr mice, with aberrations in cholangiocyte polarity, but these defects improved in adult mice. Jag1Ndr/Ndr liver organoids collapsed in culture, indicating structural instability. Whole-transcriptome sequence analyses of liver tissues from mice and patients with Alagille syndrome identified dysregulated genes encoding proteins enriched at the apical side of cholangiocytes, including CFTR and SLC5A1, as well as reduced expression of IGF1. Exposure of Notch-expressing cells to JAG1Ndr, compared with JAG1, led to hypomorphic Notch signaling, based on transcriptome analysis. JAG1-expressing cells, but not JAG1Ndr-expressing cells, bound soluble Notch1 extracellular domain, quantified by flow cytometry. However, JAG1 and JAG1Ndr cells each bound NOTCH2, and signaling from NOTCH2 signaling was reduced but not completely inhibited, in response to JAG1Ndr compared with JAG1. CONCLUSIONS: In mice, expression of a missense mutant of Jag1 (Jag1Ndr) disrupts bile duct development and recapitulates Alagille syndrome phenotypes in heart, eye, and craniofacial dysmorphology. JAG1Ndr does not bind NOTCH1, but binds NOTCH2, and elicits hypomorphic signaling. This mouse model can be used to study other features of Alagille syndrome and organ development.


Assuntos
Síndrome de Alagille/genética , Proteína Jagged-1/genética , Mutação de Sentido Incorreto , Síndrome de Alagille/metabolismo , Síndrome de Alagille/patologia , Animais , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Diferenciação Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Células HEK293 , Humanos , Proteína Jagged-1/metabolismo , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfogênese , Organoides , Fenótipo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA