Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(9): 3431-3436, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808737

RESUMO

Evidence for macroscopic life in the Paleoproterozoic Era comes from 1.8 billion-year-old (Ga) compression fossils [Han TM, Runnegar B (1992) Science 257:232-235; Knoll et al. (2006) Philos Trans R Soc Lond B 361:1023-1038], Stirling biota [Bengtson S et al. (2007) Paleobiology 33:351-381], and large colonial organisms exhibiting signs of coordinated growth from the 2.1-Ga Francevillian series, Gabon. Here we report on pyritized string-shaped structures from the Francevillian Basin. Combined microscopic, microtomographic, geochemical, and sedimentologic analyses provide evidence for biogenicity, and syngenicity and suggest that the structures underwent fossilization during early diagenesis close to the sediment-water interface. The string-shaped structures are up to 6 mm across and extend up to 170 mm through the strata. Morphological and 3D tomographic reconstructions suggest that the producer may have been a multicellular or syncytial organism able to migrate laterally and vertically to reach food resources. A possible modern analog is the aggregation of amoeboid cells into a migratory slug phase in cellular slime molds at times of starvation. This unique ecologic window established in an oxygenated, shallow-marine environment represents an exceptional record of the biosphere following the crucial changes that occurred in the atmosphere and ocean in the aftermath of the great oxidation event (GOE).


Assuntos
Evolução Biológica , Fósseis , Sedimentos Geológicos/química , Oxigênio/química , Atmosfera , Biota/fisiologia , Gabão , Oxirredução
2.
Proc Biol Sci ; 288(1944): 20202263, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33529560

RESUMO

Trilobites, key components of early Palaeozoic communities, are considered to have been invariably fully marine. Through the integration of ichnological, palaeobiological, and sedimentological datasets within a sequence-stratigraphical framework, we challenge this assumption. Here, we report uncontroversial trace and body fossil evidence of their presence in brackish-water settings. Our approach allows tracking of some trilobite groups foraying into tide-dominated estuaries. These trilobites were tolerant to salinity stress and able to make use of the ecological advantages offered by marginal-marine environments migrating up-estuary, following salt wedges either reflecting amphidromy or as euryhaline marine wanderers. Our data indicate two attempts of landward exploration via brackish water: phase 1 in which the outer portion of estuaries were colonized by olenids (Furongian-early late Tremadocian) and phase 2 involving exploration of the inner to middle estuarine zones by asaphids (Dapingian-Darriwilian). This study indicates that tolerance to salinity stress arose independently among different trilobite groups.


Assuntos
Artrópodes , Animais , Estuários , Fósseis , Águas Salinas
3.
Proc Natl Acad Sci U S A ; 113(25): 6945-8, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27247396

RESUMO

Contrasts between the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE) have long been recognized. Whereas the vast majority of body plans were established as a result of the CE, taxonomic increases during the GOBE were manifested at lower taxonomic levels. Assessing changes of ichnodiversity and ichnodisparity as a result of these two evolutionary events may shed light on the dynamics of both radiations. The early Cambrian (series 1 and 2) displayed a dramatic increase in ichnodiversity and ichnodisparity in softground communities. In contrast to this evolutionary explosion in bioturbation structures, only a few Cambrian bioerosion structures are known. After the middle to late Cambrian diversity plateau, ichnodiversity in softground communities shows a continuous increase during the Ordovician in both shallow- and deep-marine environments. This Ordovician increase in bioturbation diversity was not paralleled by an equally significant increase in ichnodisparity as it was during the CE. However, hard substrate communities were significantly different during the GOBE, with an increase in ichnodiversity and ichnodisparity. Innovations in macrobioerosion clearly lagged behind animal-substrate interactions in unconsolidated sediment. The underlying causes of this evolutionary decoupling are unclear but may have involved three interrelated factors: (i) a Middle to Late Ordovician increase in available hard substrates for bioerosion, (ii) increased predation, and (iii) higher energetic requirements for bioerosion compared with bioturbation.


Assuntos
Biodiversidade , Evolução Biológica , Animais , Fósseis
4.
Proc Biol Sci ; 281(1780): 20140038, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24523279

RESUMO

The rapid appearance of bilaterian clades at the beginning of the Phanerozoic is one of the most intriguing topics in macroevolution. However, the complex feedbacks between diversification and ecological interactions are still poorly understood. Here, we show that a systematic and comprehensive analysis of the trace-fossil record of the Ediacaran-Cambrian transition indicates that body-plan diversification and ecological structuring were decoupled. The appearance of a wide repertoire of behavioural strategies and body plans occurred by the Fortunian. However, a major shift in benthic ecological structure, recording the establishment of a suspension-feeder infauna, increased complexity of the trophic web, and coupling of benthos and plankton took place during Cambrian Stage 2. Both phases were accompanied by different styles of ecosystem engineering, but only the second one resulted in the establishment of the Phanerozoic-style ecology. In turn, the suspension-feeding infauna may have been the ecological drivers of a further diversification of deposit-feeding strategies by Cambrian Stage 3, favouring an ecological spillover scenario. Trace-fossil information strongly supports the Cambrian explosion, but allows for a short time of phylogenetic fuse during the terminal Ediacaran-Fortunian.


Assuntos
Biodiversidade , Evolução Biológica , Cadeia Alimentar , Fósseis , Animais , Meio Ambiente , Densidade Demográfica , Dinâmica Populacional
5.
Sci Rep ; 14(1): 709, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184722

RESUMO

Exceptional paleosurfaces preserving fecal casting mounds occur in the Upper Jurassic Lastres Formation of Spain. As in modern shorelines, these biogenic structures are associated with straight to sinuous-crested ripples showing the interplay of biological and physical processes in a low-energy marine environment. These trace fossils display characteristics, distribution, and densities like those of modern arenicolid populations (approximately 35 specimens per m2). Under close examination, these fecal casting mounds are morphologically undistinguishable from those produced by recent arenicolids (e.g. Arenicola marina, Abarenicola pacifica), providing evidence of the presence of these polychaetes in the Late Jurassic. As their modern counterparts, fossil arenicolids very likely modified their environment generating a seabed topography and impacting ancient benthic communities, sediment characteristics, and sediment biogeochemistry. Although the presence of oxic microhabitats and biogeochemical processes cannot be accurately measured in the fossil record, comparison with the work of modern populations allows to make inferences on sediment reworking and bioirrigation potential. In addition, association with grazing trails supports the idea of fertilization and modulation of food resources to other species. These paleosurfaces underscore the significance of high-fidelity snapshots in the fossil record (true substrates) to reconstruct past ecologies and sediment biogeochemistry. A new ichnotaxon, Cumulusichnus asturiensis n. igen. and n. isp., is defined.


Assuntos
Ecologia , Poliquetos , Animais , Fezes , Fósseis , Refeições
6.
Sci Rep ; 13(1): 22328, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102199

RESUMO

The Agronomic Revolution of the early Cambrian refers to the most significant re-structuration of the benthic marine ecosystem in life history. Using a global compilation of trace-fossil records across the Ediacaran-Cambrian transition, this paper investigates the relationship between the benthos and depositional environments prior to, during, and after the Agronomic Revolution to shed light on habitat segregation via correspondence analysis. The results of this analysis characterize Ediacaran mobile benthic bilaterians as facies-crossing and opportunistic, with low levels of habitat specialization. In contrast, the Terreneuvian and Cambrian Series 2 reveal progressive habitat segregation, parallel to matground environmental restriction. This event was conducive to the establishment of distinct endobenthic communities along the marine depositional profile, showing that the increase in styles of animal-substrate interactions was expressed by both alpha and beta ichnodiversity. Habitat segregation at the dawn of the Phanerozoic may illustrate an early extension of the trophic group amensalism at community scale.


Assuntos
Evolução Biológica , Ecossistema , Biologia Marinha , Animais , Fósseis
7.
Sci Rep ; 13(1): 22753, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123596

RESUMO

Trace fossils from Ordovician deep-marine environments are typically produced by a shallow endobenthos adapted to live under conditions of food scarcity by means of specialized grazing, farming, and trapping strategies, preserved in low-energy intermediate to distal zones of turbidite systems. High-energy proximal zones have been considered essentially barren in the early Paleozoic. We report here the first trace and body fossils of lingulide brachiopods in deep-marine environments from an Upper Ordovician turbidite channel-overbank complex in Asturias, Spain. Body and trace fossils are directly associated, supporting the interpretation of a lingulide tracemaker. Ellipsoidal cross-section, cone-in-cone spreite, and spade morphologies suggest the specimens belong to Lingulichnus verticalis. The oblique orientation in both trace and body fossils is the result of tectonic deformation. The organisms were suspension feeders showing escape, dwelling, and equilibrium behaviours controlled by sedimentation rates associated with turbidite deposition. These trace fossils and their in situ producers represent the oldest evidence of widespread endobenthos colonization in high-energy, proximal areas of turbidite systems, expanding the bathymetric range of Lingulichnus and the variety of behaviours and feeding styles in early Paleozoic deep-marine environments.


Assuntos
Fósseis , Invertebrados , Animais , Espanha
8.
Geobiology ; 20(2): 233-270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672404

RESUMO

This study documents the distribution of matgrounds in a wide variety of environments recorded in the Ordovician Lashkerak and Ghelli Formations in the Alborz Mountains of northern Iran in order to evaluate controls on their distribution along the marine depositional profile. Detailed facies analysis allowed differentiating three groups of facies associations in the Lower to Upper Ordovician deposits of the Lashkerak formation: (i) estuarine system; (ii) wave-dominated shoreface-offshore complex; and (iii) mixed river- and wave-influenced deltaic system. The Middle to Upper Ordovician deposits of the Ghelli formation are divided into two groups of facies associations: (i) tide-influenced deltaic succession and (ii) deep-water fan system. Microbially induced sedimentary structures (MISS) are present in deposits formed in the central estuarine basin (Lashkerak formation) and in proximal lobes and lobe fringes of deep-water turbidite fans (Ghelli formation). On the contrary, MISS are absent in deposits from the wave-dominated shoreface-offshore complex, river- and tide-dominated deltas, and various subenvironments of the incised wave-dominated estuary (i.e., bayhead delta and estuary mouth) and the deep-marine turbidite fan system (i.e., turbidite channel, slope, and outer lobe). The lack of evidence of mat-building microorganisms in the deltaic systems may have resulted from two factors: (1) high physico-chemical stressors caused by river-induced processes, and (2) increase in degree of sediment disturbance, biodiffusion, and bioirrigation by burrowing organisms. Formation of microbial mats in the wave-dominated shoreface-offshore complex was inhibited by the activity of an abundant and diverse infauna capable of reworking the sediment. Our analysis shows that the spatial distribution of microbial mats was controlled by an interplay of environmental factors and innovations in animal-substrate interactions, mostly expressed by secular changes in bioturbation. This study supports the notion that the agronomic revolution was diachronic, with marginal-marine and deep-sea ecosystems lagging behind shallow-marine settings.


Assuntos
Ecossistema , Sedimentos Geológicos , Animais , Estuários , Sedimentos Geológicos/química , Rios
9.
PeerJ ; 10: e13869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032952

RESUMO

The Chengjiang biota (Yunnan Province, China) is a treasure trove of soft-bodied animal fossils from the earliest stages of the Cambrian explosion. The mechanisms contributing to its unique preservation, known as the Burgess Shale-type preservation, are well understood. However, little is known about the preservation differences between various animal groups within this biota. This study compares tissue-occurrence data of 11 major animal groups in the Chengjiang biota using a probabilistic methodology. The fossil-based data from this study is compared to previous decay experiments. This shows that all groups are not equally preserved with some higher taxa more likely to preserve soft tissues than others. These differences in fossil preservation between taxa can be explained by the interaction of biological and environmental characteristics. A bias also results from differential taxonomic recognition, as some taxa are easily recognized from even poorly preserved fragments while other specimens are difficult to assign to higher taxa even with exquisite preservation.


Assuntos
Evolução Biológica , Biota , Animais , China , Probabilidade , Fósseis
10.
Sci Rep ; 12(1): 14383, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999264

RESUMO

Trace-fossil assemblages reflect the response of the benthos to sets of paleoenvironmental conditions during and immediately after sedimentation. Trace fossils have been widely studied in pelagic shelf and deep-sea chalk deposits from around the globe but never documented from ancient lagoonal chalk successions. Here we report the first detailed ichnologic analysis of a lagoonal chalk unit, using as an example the Upper Cretaceous Buda Formation from the Texas Gulf Coast Basin. In this unit, variable interconnection with the open ocean, accompanied by marked fluctuations in physicochemical parameters inherent to lagoonal circulation (e.g., salinity, hydrodynamic energy, bottom-water oxygenation), highly influenced the resultant trace-fossil content of the chalk. These lagoonal chalk deposits contain twenty ichnotaxa, displaying a clear dominance of Thalassinoides isp. and Chondrites isp., which are present in most of the bioturbated strata. The dominance of Thalassinoides isp., both in softgrounds as an element of the Cruziana Ichnofacies and in firmgrounds as a component of the Glossifungites Ichnofacies, highlights similarities with trace-fossil assemblages from shallow-water shelf-sea chalks. In contrast to both (open) shallow-water shelf-sea chalks and deep-sea chalks, the Buda Formation chalk exhibits more diverse assemblages and sharp fluctuations in ichnodiversity and ichnodisparity during relatively short periods of time. The increased ichnodiversity and ichnodisparity in this lagoonal chalk (in comparison with its open ocean counterparts) may reflect a complex interplay of taphonomic (i.e., incomplete bioturbation allowing preservation of shallow-tier trace fossils and ecologic (i.e., increased spatial environmental heterogeneity in the carbonate lagoonal setting) factors.


Assuntos
Carbonato de Cálcio , Fósseis , Animais , Carbonato de Cálcio/análise , Carbonatos/análise , Texas , Água/análise
11.
Sci Rep ; 12(1): 14431, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002516

RESUMO

The intensity, extent, and ecosystem-level impact of bioturbation (i.e. Agronomic Revolution) at the dawn of the Phanerozoic is a hotly debated issue. Middle Cambrian fan-delta deposits in southwestern Saskatchewan provide insights into the paleoenvironmental extent of the Agronomic Revolution into marginal-marine environments. The studied deposits reveal that several environmental stressors had direct impact on trace-fossil distribution and bioturbation intensities in Cambrian fan deltas. Basal and proximal subaerial deposits are characterized by very coarse grain size and absence of bioturbation. Mid-fan and fan-toe deposits were formed under subaqueous conditions and are characterized by rapid bioturbation events in between sedimentation episodes when environmental stressors were ameliorated, providing evidence of a significant landward expansion of the Agronomic Revolution. Transgressive marine deposits accumulated after the abandonment of the fan-delta system display high levels of bioturbation intensity, reflecting stable environmental conditions that favored endobenthic colonization. The presence of intense bioturbation in both subaqueous fan delta and transgressive deposits provides further support to the view that Cambrian levels of biogenic mixing were high, provided that stable environmental conditions were reached. Our study underscores the importance of evaluating sedimentary facies changes to assess the impact of environmental factors prior to making evolutionary inferences.


Assuntos
Ecossistema , Sedimentos Geológicos , Evolução Biológica , Fósseis
12.
Integr Comp Biol ; 62(2): 297-331, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35640908

RESUMO

The invasion of the land was a complex, protracted process, punctuated by mass extinctions, that involved multiple routes from marine environments. We integrate paleobiology, ichnology, sedimentology, and geomorphology to reconstruct Paleozoic terrestrialization. Cambrian landscapes were dominated by laterally mobile rivers with unstable banks in the absence of significant vegetation. Temporary incursions by arthropods and worm-like organisms into coastal environments apparently did not result in establishment of continental communities. Contemporaneous lacustrine faunas may have been inhibited by limited nutrient delivery and high sediment loads. The Ordovician appearance of early land plants triggered a shift in the primary locus of the global clay mineral factory, increasing the amount of mudrock on the continents. The Silurian-Devonian rise of vascular land plants, including the first forests and extensive root systems, was instrumental in further retaining fine sediment on alluvial plains. These innovations led to increased architectural complexity of braided and meandering rivers. Landscape changes were synchronous with establishment of freshwater and terrestrial arthropod faunas in overbank areas, abandoned fluvial channels, lake margins, ephemeral lakes, and inland deserts. Silurian-Devonian lakes experienced improved nutrient availability, due to increased phosphate weathering and terrestrial humic matter. All these changes favoured frequent invasions to permament establishment of jawless and jawed fishes in freshwater habitats and the subsequent tetrapod colonization of the land. The Carboniferous saw rapid diversification of tetrapods, mostly linked to aquatic reproduction, and land plants, including gymnosperms. Deeper root systems promoted further riverbank stabilization, contributing to the rise of anabranching rivers and braided systems with vegetated islands. New lineages of aquatic insects developed and expanded novel feeding modes, including herbivory. Late Paleozoic soils commonly contain pervasive root and millipede traces. Lacustrine animal communities diversified, accompanied by increased food-web complexity and improved food delivery which may have favored permanent colonization of offshore and deep-water lake environments. These trends continued in the Permian, but progressive aridification favored formation of hypersaline lakes, which were stressful for colonization. The Capitanian and end-Permian extinctions affected lacustrine and fluvial biotas, particularly the invertebrate infauna, although burrowing may have allowed some tetrapods to survive associated global warming and increased aridification.


Assuntos
Artrópodes , Embriófitas , Animais , Ecossistema , Extinção Biológica , Invertebrados , Rios
13.
Nat Commun ; 13(1): 1569, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322027

RESUMO

The Chengjiang Biota is the earliest Phanerozoic soft-bodied fossil assemblage offering the most complete snapshot of Earth's initial diversification, the Cambrian Explosion. Although palaeobiologic aspects of this biota are well understood, the precise sedimentary environment inhabited by this biota remains debated. Herein, we examine a non-weathered core from the Yu'anshan Formation including the interval preserving the Chengjiang Biota. Our data indicate that the succession was deposited as part of a delta influenced by storm floods (i.e., produced by upstream river floods resulting from ocean storms). Most Chengjiang animals lived in an oxygen and nutrient-rich delta front environment in which unstable salinity and high sedimentation rates were the main stressors. This unexpected finding allows for sophisticated ecological comparisons with other Burgess Shale-type deposits and emphasizes that the long-held view of Burgess Shale-type faunas as snapshots of stable distal shelf and slope communities needs to be revised based on recent sedimentologic advances.


Assuntos
Biota , Fósseis , Animais , Evolução Biológica , Inundações , Minerais , Rios
14.
Sci Rep ; 12(1): 3852, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264650

RESUMO

The Early Ordovician is a key interval for our understanding of the evolution of life on Earth as it lays at the transition between the Cambrian Explosion and the Ordovician Radiation and because the fossil record of the late Cambrian is scarce. In this study, assembly processes of Early Ordovician trilobite and echinoderm communities from the Central Anti-Atlas (Morocco), the Montagne Noire (France), and the Cordillera Oriental (Argentina) are explored. The results show that dispersal increased diachronically in trilobite communities during the Early Ordovician. Dispersal did not increase for echinoderms. Dispersal was most probably proximally triggered by the planktic revolution, the fall in seawater temperatures, changes in oceanic circulation, with an overall control by tectonic frameworks and phylogenetic constraints. The diachronous increase in dispersal within trilobite communities in the Early Ordovician highlights the complexity of ecosystem structuring during the early stages of the Ordovician Radiation. As Early Ordovician regional dispersal was followed by well-documented continental dispersal in the Middle/Late Ordovician, it is possible to consider that alongside a global increase in taxonomic richness, the Ordovician Radiation is also characterized by a gradual increase in dispersal.


Assuntos
Ecossistema , Fósseis , Animais , Evolução Biológica , Planeta Terra , Equinodermos , Filogenia
15.
Interface Focus ; 10(4): 20190103, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32642049

RESUMO

The trace-fossil record provides a wealth of information to track the rise and early evolution of animals. It comprises the activity of both hard- and soft-bodied organisms, is continuous through the Ediacaran (635-539 Ma)- Cambrian (539-485 Ma) transition, yields insights into animal behaviour and their role as ecosystem engineers, and allows for a more refined characterization of palaeoenvironmental context. In order to unravel macroevolutionary signals from the trace-fossil record, a variety of approaches is available, including not only estimation of degree of bioturbation, but also analysis of ichnodiversity and ichnodisparity trajectories, and evaluation of the occupation of infaunal ecospace and styles of ecosystem engineering. Analysis of the trace-fossil record demonstrates the presence of motile benthic bilaterians in the Ediacaran, mostly feeding from biofilms. Although Ediacaran trace fossils are simple and emplaced at or immediately below the sediment surface, an increase in ichnofossil complexity, predation pressure, sediment disturbance and penetration depth is apparent during the terminal Ediacaran. Regardless of this increase, a dramatic rise in trace fossil diversity and disparity took place during the earliest Cambrian, underscoring that the novelty of the Fortunian (539-529 Ma) cannot be underestimated. The Fortunian still shows the persistence of an Ediacaran-style matground ecology, but is fundamentally characterized by the appearance of new trace-fossil architectural plans reflecting novel ways of interacting with the substrate. The appearance of Phanerozoic-style benthic ecosystems attests to an increased length and connectivity of the food web and improved efficiency in organic carbon transfer and nutrient recycling. A profound reorganization of the infaunal ecospace is recorded in both high-energy sand-dominated nearshore areas and low-energy mud-dominated offshore environments, during the early Cambrian, starting approximately during Cambrian Age 2 (529-521 Ma), but continuing during the rest of the early Cambrian. A model comprising four evolutionary phases is proposed to synthetize information from the Ediacaran-Cambrian trace-fossil record. The use of a rich ichnological toolbox; critical, systematic and comprehensive evaluation of the Ediacaran-Cambrian trace-fossil record; and high-resolution integration of the ichnological dataset and sedimentological information show that the advent of biogenic mixing was an important factor in fully marine environments at the dawn of the Phanerozoic.

16.
Sci Rep ; 10(1): 5316, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210261

RESUMO

Trace fossils represent the primary source of information on the evolution of animal behaviour through deep time, and provide exceptional insights into complex life strategies that would be otherwise impossible to infer from the study of body parts alone. Here, we describe unusual trace fossils found in marginal-marine, storm- and river-flood deposits from the Middle Devonian Naranco Formation of Asturias (northern Spain) that constitute the first evidence for infaunal moulting in a non-trilobite euarthropod. The trace fossils are preserved in convex hyporelief, and include two main morphological variants that reflect a behavioural continuum. Morphotype 1 consists of a structure that superficially resembles a Rusophycus with an oval outline that possesses a distinctly three lobed axis with an elevated central ridge and regularly spaced transverse furrows that convey the appearance of discrete body segments. The anterior part is the most irregular region of the structure, and it is not always recorded. Morphotype 2 displays more elongated, tubular morphology. Careful observation, however, reveals that it comprises up to three successive morphotype 1 specimens organised in a linear fashion and partially truncating each other. Trilobate morphology and effaced transverse furrows are locally evident, but the predominant morphological feature is the continuous, elevated ridge. The detailed morphology of morphotype 1 and well-preserved, discrete segments of morphotype 2 closely resemble the dorsal exoskeleton of the enigmatic late Carboniferous euarthropod Camptophyllia, suggesting the possible affinities of the producer. Comparisons with patterns of Devonian phacopid trilobite exuviation suggest that the Naranco Formation trace fossils may have been produced by the infaunal activities of an euarthropod that anchored its dorsal exoskeleton in the firm sediment during the body inversion moult procedure. Our findings expand the phylogenetic and environmental occurrence of infaunal moulting in Palaeozoic euarthropods, and suggest a defensive strategy against predation, previously only known from trilobites preserved in open-marine deposits.


Assuntos
Artrópodes/classificação , Fósseis/anatomia & histologia , Muda/fisiologia , Animais , Comportamento Animal , Evolução Biológica , Filogenia , Comportamento Predatório , Espanha
17.
Sci Rep ; 10(1): 6794, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321943

RESUMO

Magadiite, a rare hydrous sodium-silicate mineral [NaSi7O13(OH)3·4(H2O)], was discovered about 50 years ago in sediments around Lake Magadi, a hypersaline alkaline lake fed by hot springs in the semi-arid southern Kenya Rift Valley. Today this harsh lacustrine environment excludes most organisms except microbial extremophiles, a few invertebrates (mostly insects), highly adapted fish (Alcolapia sp.), and birds including flamingos. Burrows discovered in outcrops of the High Magadi Beds (~25-9 ka) that predate the modern saline (trona) pan show that beetles and other invertebrates inhabit this extreme environment when conditions become more favourable. Burrows (cm-scale) preserved in magadiite in the High Magadi Beds are filled with mud, silt and sand from overlying sediments. Their stratigraphic context reveals upward-shallowing cycles from mud to interlaminated mud-magadiite to magadiite in dm-scale units. The burrows were formed when the lake floor became fresher and oxygenated, after a period when magadiite precipitated in shallow saline waters. The burrows, probably produced by beetles, show that trace fossils can provide evidence for short-term (possibly years to decades) changes in the contemporary environment that might not otherwise be recognised or preserved physically or chemically in the sediment record.


Assuntos
Ambientes Extremos , Fósseis , Sedimentos Geológicos/química , Silicatos/metabolismo , Animais , Aves/fisiologia , Peixes/fisiologia , Geografia , Fenômenos Geológicos , Fontes Termais , Insetos/fisiologia , Quênia , Lagos , Águas Salinas
18.
Sci Adv ; 6(33): eabb0618, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32851171

RESUMO

The Cambrian explosion (CE) and the great Ordovician biodiversification event (GOBE) are the two most important radiations in Paleozoic oceans. We quantify the role of bioturbation and bioerosion in ecospace utilization and ecosystem engineering using information from 1367 stratigraphic units. An increase in all diversity metrics is demonstrated for the Ediacaran-Cambrian transition, followed by a decrease in most values during the middle to late Cambrian, and by a more modest increase during the Ordovician. A marked increase in ichnodiversity and ichnodisparity of bioturbation is shown during the CE and of bioerosion during the GOBE. Innovations took place first in offshore settings and later expanded into marginal-marine, nearshore, deep-water, and carbonate environments. This study highlights the importance of the CE, despite its Ediacaran roots. Differences in infaunalization in offshore and shelf paleoenvironments favor the hypothesis of early Cambrian wedge-shaped oxygen minimum zones instead of a horizontally stratified ocean.

19.
Sci Rep ; 9(1): 18402, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804515

RESUMO

The distribution of trace-making organisms in coastal settings is largely controlled by changes in physicochemical parameters, which in turn are a response to different climatic and oceanographic conditions. The trace fossil Macaronichnus and its modern producers are typical of high-energy, siliciclastic foreshore sands in intermediate- to high-latitude settings characterized by cold-water conditions. However, it has been found in Miocene Caribbean deposits of Venezuela, prompting the hypothesis that upwelling of cold, nutrient-rich waters rather than latitude was the main control of its distribution. To test this hypothesis that was solely based on the fossil record, several trenches and sediment peels were made in two high-energy sand beaches having different oceanographic conditions along the Pacific and Caribbean coasts of the Central American Isthmus. As predicted, the burrows were found only in the highly productive waters of the Pacific coast of Costa Rica in connection with upwelling, while they were absent from the warm, oligotrophic waters of the Caribbean coast of Panama. This finding demonstrates that sometimes the past may be a key to the present, providing one of the few documented examples of reverse uniformitarianism.

20.
Nat Commun ; 10(1): 911, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796215

RESUMO

Rocks of Ediacaran age (~635-541 Ma) contain the oldest fossils of large, complex organisms and their behaviors. These fossils document developmental and ecological innovations, and suggest that extinctions helped to shape the trajectory of early animal evolution. Conventional methods divide Ediacaran macrofossil localities into taxonomically distinct clusters, which may represent evolutionary, environmental, or preservational variation. Here, we investigate these possibilities with network analysis of body and trace fossil occurrences. By partitioning multipartite networks of taxa, paleoenvironments, and geologic formations into community units, we distinguish between biostratigraphic zones and paleoenvironmentally restricted biotopes, and provide empirically robust and statistically significant evidence for a global, cosmopolitan assemblage unique to terminal Ediacaran strata. The assemblage is taxonomically depauperate but includes fossils of recognizable eumetazoans, which lived between two episodes of biotic turnover. These turnover events were the first major extinctions of complex life and paved the way for the Cambrian radiation of animals.


Assuntos
Extinção Biológica , Fósseis/anatomia & histologia , Paleontologia/métodos , Animais , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA