Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(9): e0102523, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37668367

RESUMO

Human astrovirus is a positive-sense, single-stranded RNA virus. Astrovirus infection causes gastrointestinal symptoms and can lead to encephalitis in immunocompromised patients. Positive-strand RNA viruses typically utilize host intracellular membranes to form replication organelles, which are potential antiviral targets. Many of these replication organelles are double-membrane vesicles (DMVs). Here, we show that astrovirus infection leads to an increase in DMV formation through a replication-dependent mechanism that requires some early components of the autophagy machinery. Results indicate that the upstream class III phosphatidylinositol 3-kinase (PI3K) complex, but not LC3 conjugation machinery, is utilized in DMV formation. Both chemical and genetic inhibition of the PI3K complex lead to significant reduction in DMVs, as well as viral replication. Elucidating the role of autophagy machinery in DMV formation during astrovirus infection reveals a potential target for therapeutic intervention for immunocompromised patients. IMPORTANCE These studies provide critical new evidence that astrovirus replication requires formation of double-membrane vesicles, which utilize class III phosphatidylinositol 3-kinase (PI3K), but not LC3 conjugation autophagy machinery, for biogenesis. These results are consistent with replication mechanisms for other positive-sense RNA viruses suggesting that targeting PI3K could be a promising therapeutic option for not only astrovirus, but other positive-sense RNA virus infections.


Assuntos
Mamastrovirus , Fosfatidilinositol 3-Quinase , Replicação Viral , Humanos , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Membranas Intracelulares/metabolismo , Organelas , Fosfatidilinositol 3-Quinase/metabolismo , Vírus de RNA , Mamastrovirus/fisiologia , Transdução de Sinais
2.
PLoS Pathog ; 18(4): e1009716, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35452499

RESUMO

Human astroviruses (HAstV), positive sense single-stranded RNA viruses, are one of the leading causes of diarrhea worldwide. Despite their high prevalence, the cellular mechanisms of astrovirus pathogenesis remain ill-defined. Previous studies showed HAstV increased epithelial barrier permeability by causing a re-localization of the tight junction protein, occludin. In these studies, we demonstrate that HAstV replication induces epithelial-mesenchymal transition (EMT), by upregulating the transcription of EMT-related genes within 8 hours post-infection (hpi), followed by the loss of cell-cell contacts and disruption of polarity by 24 hpi. While multiple classical HAstV serotypes, including clinical isolates, induce EMT, the non-classical genotype HAstV-VA1 and two strains of reovirus are incapable of inducing EMT. Unlike the re-localization of tight junction proteins, HAstV-induced EMT requires productive replication and is dependent transforming growth factor-ß (TGF-ß) activity. Finally, inhibiting TGF-ß signaling and EMT reduces viral replication, highlighting its importance in the viral life cycle. This finding puts classical strains of HAstV-1 in an exclusive group of non-oncogenic viruses triggering EMT.


Assuntos
Infecções por Astroviridae , Mamastrovirus , Transição Epitelial-Mesenquimal , Humanos , Mamastrovirus/genética , Fator de Crescimento Transformador beta , Replicação Viral
3.
bioRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090568

RESUMO

Human astrovirus is a positive sense, single stranded RNA virus. Astrovirus infection causes gastrointestinal symptoms and can lead to encephalitis in immunocompromised patients. Positive strand RNA viruses typically utilize host intracellular membranes to form replication organelles, which are potential antiviral targets. Many of these replication organelles are double membrane vesicles (DMVs). Here we show that astrovirus infection leads to an increase in DMV formation, and this process is replication-dependent. Our data suggest that astrovirus infection induces rearrangement of endoplasmic reticulum fragments, which may become the origin for DMV formation. Transcriptional data suggested that formation of DMVs during astrovirus infection requires some early components of the autophagy machinery. Results indicate that the upstream class III phosphatidylinositol 3-kinase (PI3K) complex, but not LC3 conjugation machinery, is utilized in DMV formation. Inhibition of the PI3K complex leads to significant reduction in viral replication and release from cells. Elucidating the role of autophagy machinery in DMV formation during astrovirus infection reveals a potential target for therapeutic intervention for immunocompromised patients. Importance: These studies provide critical new evidence that astrovirus replication requires formation of double membrane vesicles, which utilize class III PI3K, but not LC3 conjugation autophagy machinery for biogenesis. These results are consistent with replication mechanisms for other positive sense RNA viruses. This suggests that targeting PI3K could be a promising therapeutic option for not only astrovirus, but other positive sense RNA virus infections.

4.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961247

RESUMO

Pregnant women and infants are considered high-risk groups for increased influenza disease severity. While influenza virus vaccines are recommended during pregnancy, infants cannot be vaccinated until at least six months of age. Passive transfer of maternal antibodies (matAbs) becomes vital for the infant's protection. Here, we employed an ultrasound-based timed-pregnancy murine model and examined matAb responses to distinct influenza vaccine platforms and influenza A virus (IAV) infection in dams and their offspring. We demonstrate vaccinating dams with a live-attenuated influenza virus (LAIV) vaccine or recombinant hemagglutinin (rHA) proteins administered with adjuvant resulted in enhanced and long-lasting immunity and protection from influenza in offspring. In contrast, a trivalent split-inactivated vaccine (TIV) afforded limited protection in our model. By cross-fostering pups, we show the timing of antibody transfer from vaccinated dams to their offspring (prenatal versus postnatal) can shape the antibody profile depending on the vaccine platform. Our studies provide information on how distinct influenza vaccines lead to immunogenicity and efficacy during pregnancy, impact the protection of their offspring, and detail roles for IgG1 and IgG2c in the development of vaccine administration during pregnancy that stimulate and measure expression of both antibody subclasses.

5.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693589

RESUMO

Integrins are essential surface receptors that sense extracellular changes to initiate various intracellular signaling cascades. The rapid activation of the epithelial-intrinsic ß6 integrin during influenza A virus (IAV) infection has been linked to innate immune impairments. Yet, how ß6 regulates epithelial immunity remains undefined. Here, we identify the role of ß6 in mediating the Toll-like receptor 7 (TLR7) through the regulation of intracellular trafficking. We demonstrate that deletion of the ß6 integrin in lung epithelial cells significantly enhances the TLR7-mediated activation of the type I interferon (IFN) response during homeostasis and respiratory infection. IAV-induced ß6 facilitates TLR7 trafficking to lysosome-associated membrane protein (LAMP2a) components, leading to a reduction in endosomal compartments and associated TLR7 signaling. Our findings reveal an unappreciated role of ß6-induced autophagy in influencing epithelial immune responses during influenza virus infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA