RESUMO
T memory stem cells (TSCM) display increased self-renewal and prolonged survival capabilities, thus preventing T cell exhaustion and promoting effective anti-tumor T cell responses. TSCM cells can be expanded by Urolithin A (UA), which is produced by the commensal gut microbiome from foods rich in ellagitannins and is known to improve mitochondrial health. Oral UA administration to tumor-bearing mice conferred strong anti-tumor CD8+ T cell immunity, whereas ex vivo UA pre-treated T cells displayed improved anti-tumor function upon adoptive cell transfer. UA-induced TSCM formation depended on Pink1-mediated mitophagy triggering cytosolic release of the mitochondrial phosphatase Pgam5. Cytosolic Pgam5 dephosphorylated ß-catenin, which drove Wnt signaling and compensatory mitochondrial biogenesis. Collectively, we unravel a critical signaling pathway linking mitophagy to TSCM formation and suggest that the well-tolerated metabolic compound UA represents an attractive option to improve immune therapy.
Assuntos
Cumarínicos , Mitofagia , Camundongos , Animais , Cumarínicos/farmacologia , Via de Sinalização Wnt , Células-Tronco , Memória ImunológicaRESUMO
Gene therapy has become a clinical reality as market-approved advanced therapy medicinal products for the treatment of distinct monogenetic diseases and B-cell malignancies. This Therapeutic Review aims to explain how progress in genome editing technologies offers the possibility to expand both therapeutic options and the types of diseases that will become treatable. To frame these impressive advances in the context of modern medicine, we incorporate examples from human clinical trials into our discussion on how genome editing will complement currently available strategies in gene therapy, which still mainly rely on gene addition strategies. Furthermore, safety considerations and ethical implications, including the issue of accessibility, are addressed as these crucial parameters will define the impact that gene therapy in general and genome editing in particular will have on how we treat patients in the near future.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Terapia GenéticaRESUMO
One of the biggest challenges for in vivo gene therapy are vectors mediating highly selective gene transfer into a defined population of therapy-relevant cells. Here we present DARPin-targeted AAVs (DART-AAVs) displaying DARPins specific for human and murine CD8. Insertion of DARPins into the GH2/GH3 loop of the capsid protein 1 (VP1) of AAV2 and AAV6 resulted in high selectivity for CD8-positive T cells with unimpaired gene delivery activity. Remarkably, the capsid core structure was unaltered with protruding DARPins detectable. In complex primary cell mixtures, including donor blood or systemic injections into mice, the CD8-targeted AAVs were by far superior to unmodified AAV2 and AAV6 in terms of selectivity, target cell viability, and gene transfer rates. In vivo, up to 80% of activated CD8+ T cells were hit upon a single vector injection into conditioned humanized or immunocompetent mice. While gene transfer rates decreased significantly under non-activated conditions, genomic modification selectively in CD8+ T cells was still detectable upon Cre delivery into indicator mice. In both mouse models, selectivity for CD8+ T cells was close to absolute with exceptional detargeting from liver. The CD8-AAVs described here expand strategies for immunological research and in vivo gene therapy options.
Assuntos
Linfócitos T CD8-Positivos , Dependovirus , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Animais , Dependovirus/genética , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Terapia Genética/métodos , Transdução Genética , Proteínas do Capsídeo/genéticaRESUMO
Fc receptors are involved in a variety of physiologically and disease-relevant responses. Among them, FcγRIIA (CD32a) is known for its activating functions in pathogen recognition and platelet biology, and, as potential marker of T lymphocytes latently infected with HIV-1. The latter has not been without controversy due to technical challenges complicated by T-B cell conjugates and trogocytosis as well as a lack of antibodies distinguishing between the closely related isoforms of FcγRII. To generate high-affinity binders specific for FcγRIIA, libraries of designed ankyrin repeat proteins (DARPins) were screened for binding to its extracellular domains by ribosomal display. Counterselection against FcγRIIB eliminated binders cross-reacting with both isoforms. The identified DARPins bound FcγRIIA with no detectable binding for FcγRIIB. Their affinities for FcγRIIA were in the low nanomolar range and could be enhanced by cleavage of the His-tag and dimerization. Interestingly, complex formation between DARPin and FcγRIIA followed a two-state reaction model, and discrimination from FcγRIIB was based on a single amino acid residue. In flow cytometry, DARPin F11 detected FcγRIIA+ cells even when they made up less than 1% of the cell population. Image stream analysis of primary human blood cells confirmed that F11 caused dim but reliable cell surface staining of a small subpopulation of T lymphocytes. When incubated with platelets, F11 inhibited their aggregation equally efficient as antibodies unable to discriminate between both FcγRII isoforms. The selected DARPins are unique novel tools for platelet aggregation studies as well as the role of FcγRIIA for the latent HIV-1 reservoir.
Assuntos
Proteínas de Repetição de Anquirina Projetadas , Agregação Plaquetária , Receptores de IgG , Humanos , Anticorpos/metabolismo , Plaquetas/metabolismo , Proteínas de Repetição de Anquirina Projetadas/metabolismo , HIV-1 , Isoformas de Proteínas/metabolismo , Receptores de IgG/metabolismo , Latência Viral , Linfócitos T/virologiaRESUMO
Alzheimer's disease (AD) is histopathologically characterized by Aß plaques and the accumulation of hyperphosphorylated Tau species, the latter also constituting key hallmarks of primary tauopathies. Whereas Aß is produced by amyloidogenic APP processing, APP processing along the competing nonamyloidogenic pathway results in the secretion of neurotrophic and synaptotrophic APPsα. Recently, we demonstrated that APPsα has therapeutic effects in transgenic AD model mice and rescues Aß-dependent impairments. Here, we examined the potential of APPsα to mitigate Tau-induced synaptic deficits in P301S mice (both sexes), a widely used mouse model of tauopathy. Analysis of synaptic plasticity revealed an aberrantly increased LTP in P301S mice that could be normalized by acute application of nanomolar amounts of APPsα to hippocampal slices, indicating a homeostatic function of APPsα on a rapid time scale. Further, AAV-mediated in vivo expression of APPsα restored normal spine density of CA1 neurons even at stages of advanced Tau pathology not only in P301S mice, but also in independent THY-Tau22 mice. Strikingly, when searching for the mechanism underlying aberrantly increased LTP in P301S mice, we identified an early and progressive loss of major GABAergic interneuron subtypes in the hippocampus of P301S mice, which may lead to reduced GABAergic inhibition of principal cells. Interneuron loss was paralleled by deficits in nest building, an innate behavior highly sensitive to hippocampal impairments. Together, our findings indicate that APPsα has therapeutic potential for Tau-mediated synaptic dysfunction and suggest that loss of interneurons leads to disturbed neuronal circuits that compromise synaptic plasticity as well as behavior.SIGNIFICANCE STATEMENT Our findings indicate, for the first time, that APPsα has the potential to rescue Tau-induced spine loss and abnormal synaptic plasticity. Thus, APPsα might have therapeutic potential not only because of its synaptotrophic functions, but also its homeostatic capacity for neuronal network activity. Hence, APPsα is one of the few molecules which has proven therapeutic effects in mice, both for Aß- and Tau-dependent synaptic impairments and might therefore have therapeutic potential for patients suffering from AD or primary tauopathies. Furthermore, we found in P301S mice a pronounced reduction of inhibitory interneurons as the earliest pathologic event preceding the accumulation of hyperphosphorylated Tau species. This loss of interneurons most likely disturbs neuronal circuits that are important for synaptic plasticity and behavior.
Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Tauopatias/patologiaRESUMO
Chimeric antigen receptor (CAR) T cells are a cancer immunotherapy of extremes. Unprecedentedly effective, but complex and costly to manufacture, they are not yet a therapeutic option for all who would benefit. This disparity has motivated worldwide efforts to simplify treatment. Among the proposed solutions, the generation of CAR T cells directly in the patient, i.e., in vivo, is arguably simultaneously the most technically challenging and clinically useful approach to convert CAR therapy from a cell-based autologous medicinal product into a universally applicable off-the-shelf treatment. Here, we review the current state of the art of in vivo CAR therapy, focusing especially on the vector technologies used. These cover lentiviral vectors and adenovirus-associated vectors as well as synthetic polymer nanocarriers and lipid nanoparticles. Proof of concept, i.e., the generation of CAR cells directly in mouse models, has been demonstrated for all vector platforms. Receptor targeting of vector particles is crucial, as it can prevent CAR gene delivery into off-target cells, thus reducing toxicities. We discuss the properties of the vector platforms, such as their immunogenicity, potency, and modes of CAR delivery (permanent versus transient). Finally, we outline the work required to advance in vivo CAR therapy from proof of concept to a robust, scalable technology for clinical testing.
Assuntos
Imunoterapia Adotiva , Medicina de Precisão , Receptores de Antígenos Quiméricos , Animais , Lipossomos , Camundongos , Nanopartículas , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos TRESUMO
Increasing evidence suggests that synaptic functions of the amyloid precursor protein (APP), which is key to Alzheimer pathogenesis, may be carried out by its secreted ectodomain (APPs). The specific roles of APPsα and APPsß fragments, generated by non-amyloidogenic or amyloidogenic APP processing, respectively, remain however unclear. Here, we expressed APPsα or APPsß in the adult brain of conditional double knockout mice (cDKO) lacking APP and the related APLP2. APPsα efficiently rescued deficits in spine density, synaptic plasticity (LTP and PPF), and spatial reference memory of cDKO mice. In contrast, APPsß failed to show any detectable effects on synaptic plasticity and spine density. The C-terminal 16 amino acids of APPsα (lacking in APPsß) proved sufficient to facilitate LTP in a mechanism that depends on functional nicotinic α7-nAChRs. Further, APPsα showed high-affinity, allosteric potentiation of heterologously expressed α7-nAChRs in oocytes. Collectively, we identified α7-nAChRs as a crucial physiological receptor specific for APPsα and show distinct in vivo roles for APPsα versus APPsß. This implies that reduced levels of APPsα that might occur during Alzheimer pathogenesis cannot be compensated by APPsß.
Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Cognição/fisiologia , Plasticidade Neuronal/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia , Transmissão Sináptica/genética , Receptor Nicotínico de Acetilcolina alfa7/genéticaRESUMO
T cells modified with CD19-specific chimeric antigen receptors (CARs) result in significant clinical benefit for leukemia patients but constitute a challenge for manufacturing. We have recently demonstrated the in vivo generation of CD19-CAR T cells using the CD8-targeted lentiviral vector (CD8-LV). In this study, we investigated the in vivo generation of CD4+ CAR T cells using CD4-targeted LV (CD4-LV). Administration of CD4-LV into NSG mice transplanted with human peripheral blood mononuclear cells (PBMCs) led to 40%-60% of human CD4+ lymphocytes being CAR positive while CD8+ cells remained CAR negative. CAR+ T cells displayed a T helper 1 (Th1)/Th2 phenotype, which was accompanied by CD19+ B cell elimination. Intravenous administration of CD4-LV into NSG mice reconstituted with human CD34+ cells induced CAR expression and B cell elimination within 2-3 weeks post-injection. Preclinical analysis in a tumor mouse model revealed that mice administered CD4-LV exhibited faster and superior tumor cell killing compared to mice injected with CD8-LV alone or as a mixture with CD4-LV. Further analysis suggests that CD4+CAR+ cells may outperform CD8+CAR+ cells, especially at a high burden of target antigen, mainly since CD8 cells are more prone to exhaustion. This first description of in vivo-generated CD4+ CAR T cells supports their importance for cellular therapy.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígenos CD19/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
Chimeric Antigen Receptor (CAR)-redirected T cells show great efficacy in the patient-specific therapy of hematologic malignancies. Here, we demonstrate that a DARPin with specificity for CD4 specifically redirects and triggers the activation of CAR engineered T cells resulting in the depletion of CD4+ target cells aiming for elimination of the human immunodeficiency virus (HIV) reservoir.
Assuntos
Repetição de Anquirina , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , HIV/isolamento & purificação , Imunoterapia Adotiva , Depleção Linfocítica/métodos , Peptídeos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Relação Dose-Resposta Imunológica , Avaliação Pré-Clínica de Medicamentos , Gammaretrovirus/genética , Vetores Genéticos/genética , Células HEK293 , Infecções por HIV/virologia , Humanos , Ativação Linfocitária , Peptídeos/química , Anticorpos de Cadeia Única/imunologia , Transdução GenéticaRESUMO
Endothelial cells (ECs) not only are important for oxygen delivery but also act as a paracrine source for signals that determine the balance between tissue regeneration and fibrosis. Here we show that genetic inactivation of flow-induced transcription factor Krüppel-like factor 2 (KLF2) in ECs results in reduced liver damage and augmentation of hepatocyte proliferation after chronic liver injury by treatment with carbon tetrachloride (CCl4). Serum levels of GLDH3 and ALT were significantly reduced in CCl4-treated EC-specific KLF2-deficient mice. In contrast, transgenic overexpression of KLF2 in liver sinusoidal ECs reduced hepatocyte proliferation. KLF2 induced activin A expression and secretion from endothelial cells in vitro and in vivo, which inhibited hepatocyte proliferation. However, loss or gain of KLF2 expression did not change capillary density and liver fibrosis, but significantly affected hepatocyte proliferation. Taken together, the data demonstrate that KLF2 induces an antiproliferative secretome, including activin A, which attenuates liver regeneration.
Assuntos
Ativinas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Regeneração Hepática/fisiologia , Fígado/citologia , Ativinas/genética , Animais , Tetracloreto de Carbono/toxicidade , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos TransgênicosRESUMO
In 2018, two novel cancer therapies based on chimeric antigen receptors (CARs) were granted marketing authorization in the European Union. Authorized for use against advanced lymphoma and/or leukemia, the products were at the center of international attention, not only due to their novel mode of action and their encouraging efficacy but also because of their sometimes severe side effects and the economic and logistic challenges posed by their manufacture. Now, almost two years later, hundreds of active clinical trials emphasize the global drive to harness the full potential of CAR technology.In this article, we describe the mode of action of CAR T and CAR NK cells and review the clinical testing situation as well as early real-world data. In recent years, preclinical studies using advanced animal models have provided first insights into the mechanisms underlying the severe side effects of CAR T therapy. We summarize their results and describe the available models. Additionally, we discuss potential solutions to the hurdles currently limiting CAR technology. So far used as last-line treatment for patients with aggressive disease, CAR technology has the potential to become a new, broadly effective standard for tumor therapy.
Assuntos
Receptores de Antígenos Quiméricos , Animais , Alemanha , Humanos , Imunoterapia Adotiva , Oncologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos TRESUMO
Receptor-targeted lentiviral vectors (LVs) can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV) glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance). Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV) glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4) was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.
Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos , Lentivirus/genética , Vírus Nipah/genética , Internalização do Vírus , Animais , Western Blotting , Linhagem Celular , Citometria de Fluxo , Glicoproteínas/metabolismo , Humanos , Microscopia Eletrônica , Transdução Genética , Proteínas do Envelope Viral/metabolismoRESUMO
Playing a central role in both innate and adaptive immunity, CD4(+) T cells are a key target for genetic modifications in basic research and immunotherapy. In this article, we describe novel lentiviral vectors (CD4-LV) that have been rendered selective for human or simian CD4(+) cells by surface engineering. When applied to PBMCs, CD4-LV transduced CD4(+) but not CD4(-) cells. Notably, also unstimulated T cells were stably genetically modified. Upon systemic or intrasplenic administration into mice reconstituted with human PBMCs or hematopoietic stem cells, reporter gene expression was predominantly detected in lymphoid organs. Evaluation of GFP expression in organ-derived cells and blood by flow cytometry demonstrated exclusive gene transfer into CD4(+) human lymphocytes. In bone marrow and spleen, memory T cells were preferentially hit. Toward therapeutic applications, we also show that CD4-LV can be used for HIV gene therapy, as well as for tumor therapy, by delivering chimeric Ag receptors. The potential for in vivo delivery of the FOXP3 gene was also demonstrated, making CD4-LV a powerful tool for inducible regulatory T cell generation. In summary, our work demonstrates the exclusive gene transfer into a T cell subset upon systemic vector administration opening an avenue toward novel strategies in immunotherapy.
Assuntos
Linfócitos T CD4-Positivos/metabolismo , Vetores Genéticos/genética , Lentivirus/genética , Transdução Genética , Animais , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Transplante de Células/métodos , Células Cultivadas , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Leucócitos Mononucleares/metabolismo , Luciferases/genética , Luciferases/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Baço/metabolismo , Timo/metabolismo , Transplante HeterólogoRESUMO
Pre-emptive cancer immunotherapy by donor lymphocyte infusion (DLI) using cytokine-induced killer (CIK) cells may be beneficial to prevent relapse with a reduced risk of causing graft-versus-host-disease. CIK cells are a heterogeneous effector cell population including T cells (CD3(+) CD56(-) ), natural killer (NK) cells (CD3(-) CD56(+) ) and natural killer T (T-NK) cells (CD3(+) CD56(+) ) that exhibit non-major histocompatibility complex (MHC)-restricted cytotoxicity and are generated by ex vivo expansion of peripheral blood mononuclear cells in the presence of interferon (IFN)-γ, anti-CD3 antibody, interleukin-2 (IL-2) and interleukin-15 (IL-15). To facilitate selective target-cell recognition and enhance specific cytotoxicity against B-cell acute lymphoblastic leukemia (B-ALL), we transduced CIK cells with a lentiviral vector encoding a chimeric antigen receptor (CAR) that carries a composite CD28-CD3ζ domain for signaling and a CD19-specific scFv antibody fragment for cell binding (CAR 63.28.z). In vitro analysis revealed high and specific cell killing activity of CD19-targeted CIK/63.28.z cells against otherwise CIK-resistant cancer cell lines and primary B-ALL blasts, which was dependent on CD19 expression and CAR signaling. In a xenograft model in immunodeficient mice, treatment with CIK/63.28.z cells in contrast to therapy with unmodified CIK cells resulted in complete and durable molecular remissions of established primary pre-B-ALL. Our results demonstrate potent antileukemic activity of CAR-engineered CIK cells in vitro and in vivo, and suggest this strategy as a promising approach for adoptive immunotherapy of refractory pre-B-ALL.
Assuntos
Células Matadoras Induzidas por Citocinas/imunologia , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Recombinantes de Fusão/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Engenharia Celular/métodos , Linhagem Celular Tumoral , Células Matadoras Induzidas por Citocinas/transplante , Feminino , Células HEK293 , Humanos , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/imunologia , Masculino , Camundongos , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/genética , Transdução Genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
UNLABELLED: To induce and trigger innate and adaptive immune responses, antigen-presenting cells (APCs) take up and process antigens. Retroviral particles are capable of transferring not only genetic information but also foreign cargo proteins when they are genetically fused to viral structural proteins. Here, we demonstrate the capacity of lentiviral protein transfer vectors (PTVs) for targeted antigen transfer directly into APCs and thereby induction of cytotoxic T cell responses. Targeting of lentiviral PTVs to APCs can be achieved analogously to gene transfer vectors by pseudotyping the particles with truncated wild-type measles virus (MV) glycoproteins (GPs), which use human SLAM (signaling lymphocyte activation molecule) as a main entry receptor. SLAM is expressed on stimulated lymphocytes and APCs, including dendritic cells. SLAM-targeted PTVs transferred the reporter protein green fluorescent protein (GFP) or Cre recombinase with strict receptor specificity into SLAM-expressing CHO and B cell lines, in contrast to broadly transducing vesicular stomatitis virus G protein (VSV-G) pseudotyped PTVs. Primary myeloid dendritic cells (mDCs) incubated with targeted or nontargeted ovalbumin (Ova)-transferring PTVs stimulated Ova-specific T lymphocytes, especially CD8(+) T cells. Administration of Ova-PTVs into SLAM-transgenic and control mice confirmed the observed predominant induction of antigen-specific CD8(+) T cells and demonstrated the capacity of protein transfer vectors as suitable vaccines for the induction of antigen-specific immune responses. IMPORTANCE: This study demonstrates the specificity and efficacy of antigen transfer by SLAM-targeted and nontargeted lentiviral protein transfer vectors into antigen-presenting cells to trigger antigen-specific immune responses in vitro and in vivo. The observed predominant activation of antigen-specific CD8(+) T cells indicates the suitability of SLAM-targeted and also nontargeted PTVs as a vaccine for the induction of cytotoxic immune responses. Since cytotoxic CD8(+) T lymphocytes are a mainstay of antitumoral immune responses, PTVs could be engineered for the transfer of specific tumor antigens provoking tailored antitumoral immunity. Therefore, PTVs can be used as safe and efficient alternatives to gene transfer vectors or live attenuated replicating vector platforms, avoiding genotoxicity or general toxicity in highly immunocompromised patients, respectively. Thereby, the potential for easy envelope exchange allows the circumventing of neutralizing antibodies, e.g., during repeated boost immunizations.
Assuntos
Antígenos CD/imunologia , Vetores Genéticos/genética , Ovalbumina/imunologia , Receptores de Superfície Celular/imunologia , Linfócitos T Citotóxicos/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Antígenos CD/biossíntese , Células CHO , Cricetulus , Células Dendríticas/imunologia , Proteínas de Fluorescência Verde/biossíntese , Células HEK293 , Humanos , Integrases/biossíntese , Integrases/genética , Lentivirus/genética , Ativação Linfocitária/imunologia , Vírus do Sarampo/genética , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Transporte Proteico , Receptores de Superfície Celular/biossíntese , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Transfecção , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genéticaRESUMO
Alzheimer's disease (AD) is characterized by synaptic failure, dendritic and axonal atrophy, neuronal death and progressive loss of cognitive functions. It is commonly assumed that these deficits arise due to ß-amyloid accumulation and plaque deposition. However, increasing evidence indicates that loss of physiological APP functions mediated predominantly by neurotrophic APPsα produced in the non-amyloidogenic α-secretase pathway may contribute to AD pathogenesis. Upregulation of APPsα production via induction of α-secretase might, however, be problematic as this may also affect substrates implicated in tumorigenesis. Here, we used a gene therapy approach to directly overexpress APPsα in the brain using AAV-mediated gene transfer and explored its potential to rescue structural, electrophysiological and behavioral deficits in APP/PS1∆E9 AD model mice. Sustained APPsα overexpression in aged mice with already preexisting pathology and amyloidosis restored synaptic plasticity and partially rescued spine density deficits. Importantly, AAV-APPsα treatment also resulted in a functional rescue of spatial reference memory in the Morris water maze. Moreover, we demonstrate a significant reduction of soluble Aß species and plaque load. In addition, APPsα induced the recruitment of microglia with a ramified morphology into the vicinity of plaques and upregulated IDE and TREM2 expression suggesting enhanced plaque clearance. Collectively, these data indicate that APPsα can mitigate synaptic and cognitive deficits, despite established pathology. Increasing APPsα may therefore be of therapeutic relevance for AD.
Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Secretases da Proteína Precursora do Amiloide/metabolismo , Encéfalo/fisiopatologia , Terapia Genética , Sinapses/fisiologia , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Transgênicos , Microglia/patologia , Microglia/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Presenilina-1/genética , Presenilina-1/metabolismo , Técnicas de Cultura de TecidosRESUMO
Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.
Assuntos
Antígenos CD/genética , Terapia Genética/métodos , Glicoproteínas/genética , Células-Tronco Hematopoéticas/imunologia , Lentivirus/genética , Peptídeos/genética , Antígeno AC133 , Animais , Antígenos CD/imunologia , Antígenos CD34/genética , Antígenos CD34/imunologia , Expressão Gênica , Vetores Genéticos , Glicoproteínas/imunologia , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/imunologia , Doença Granulomatosa Crônica/patologia , Doença Granulomatosa Crônica/terapia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Peptídeos/imunologia , Cultura Primária de Células , Transdução Genética , Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismoRESUMO
Different types of endothelial cells (EC) fulfill distinct tasks depending on their microenvironment. ECs are therefore difficult to genetically manipulate ex vivo for functional studies or gene therapy. We assessed lentiviral vectors (LVs) targeted to the EC surface marker CD105 for in vivo gene delivery. The mouse CD105-specific vector, mCD105-LV, transduced only CD105-positive cells in primary liver cell cultures. Upon systemic injection, strong reporter gene expression was detected in liver where mCD105-LV specifically transduced liver sinusoidal ECs (LSECs) but not Kupffer cells, which were mainly transduced by nontargeted LVs. Tumor ECs were specifically targeted upon intratumoral vector injection. Delivery of the erythropoietin gene with mCD105-LV resulted in substantially increased erythropoietin and hematocrit levels. The human CD105-specific vector (huCD105-LV) transduced exclusively human LSECs in mice transplanted with human liver ECs. Interestingly, when applied at higher dose and in absence of target cells in the liver, huCD105-LV transduced ECs of a human artery transplanted into the descending mouse aorta. The data demonstrate for the first time targeted gene delivery to specialized ECs upon systemic vector administration. This strategy offers novel options to better understand the physiological functions of ECs and to treat genetic diseases such as those affecting blood factors.
Assuntos
Artérias , Células Endoteliais/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Fígado , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Linhagem Celular , Endoglina , Eritropoetina/genética , Eritropoetina/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células de Kupffer/metabolismo , Lentivirus/genética , Camundongos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução GenéticaRESUMO
Gene therapy represents a promising therapeutic paradigm for addressing many disorders, but the absence of a vector that can be robustly and reproducibly functionalized with cell-homing functionality to mediate the delivery of genetic cargo specifically to target cells following systemic administration has stood as a major impediment. In this study, a high-affinity protein-protein pair comprising a splicing-deficient naturally split intein was used as molecular Velcro to append a HER2/neu-binding protein (DARPin) onto the surface of a binding-deficient, fusion-competent lentivirus. HER2/neu-specific lentiviruses created using this in vitro pseudotyping approach were able to deliver their genetic reporter cargo specifically to cells that express the target receptor at high levels in a co-culture. We envision that the described technology could provide a powerful, broadly applicable platform for the incorporation of cell-targeting functionality onto viral vectors.
Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sistemas de Liberação de Medicamentos , Terapia Genética/métodos , Lentivirus/genética , Lentivirus/fisiologia , Ligação Viral , Receptor ErbB-2/metabolismo , Receptores Virais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Cell entry of enveloped viruses is initiated by attachment to the virus receptor followed by fusion between the virus and host cell membranes. Measles virus (MV) attachment to its receptor is mediated by the hemagglutinin (H), which is thought to produce conformational changes in the membrane fusion protein (F) that trigger insertion of its fusion peptide into the target cell membrane. Here, we uncoupled receptor attachment and the fusion-helper function of H by introducing Y481A, R533A, S548L, and F549S mutations into the viral attachment protein that made it blind to its normal receptors. An artificial receptor attachment protein specific for Her2/neu was incorporated into the membranes of pseudotyped lentivirus particles as a separate transmembrane protein along with the F protein. Surprisingly, these particles entered efficiently into Her2/neu-positive SK-OV-3 as well as CHO-Her2 cells. Cell entry was independent of endocytosis but strictly dependent on the presence of H. H-specific monoclonal antibodies, as well as a mutation in H interfering with H/F cooperation, blocked cell entry. The particles mediated stable and specific transfer of reporter genes into Her2/neu-positive human tumor cells also in vivo, while exhibiting improved infectivity and higher titers than Her2/neu-targeted vectors displaying the targeting domain on H. Extending the current model of MV cell entry, the data suggest that receptor binding of H is not required for its fusion-helper function but that particle-cell contact in general may be sufficient to induce the conformational changes in the H/F complex and activate membrane fusion.