Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(23): 16693-16707, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809246

RESUMO

Methyl carboxylate esters promote the formation of dimethyl ether (DME) from the dehydration of methanol in H-ZSM-5 zeolite. We employ a multilevel quantum method to explore the possible associative and dissociative mechanisms in the presence, and absence, of six methyl ester promoters. This hybrid method combines density functional theory, with dispersion corrections (DFT-D3), for the full periodic system, with second-order Møller-Plesset perturbation theory (MP2) for small clusters representing the reaction site, and coupled cluster with single, double, and perturbative triple substitution (CCSD(T)) for the reacting molecules. The calculated adsorption enthalpy of methanol, and reaction enthalpies of the dehydration of methanol to DME within H-ZSM-5, agree with experiment to within chemical accuracy (∼4 kJ mol-1). For the promoters, a reaction pathway via an associative mechanism gives lower overall reaction enthalpies and barriers compared to the reaction with methanol only. Each stage of this mechanism is explored and related to experimental data. We provide evidence that suggests the promoter's adsorption to the Brønsted acid site is the most important factor dictating its efficiency.

2.
Phys Chem Chem Phys ; 25(18): 12607-12628, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37114325

RESUMO

This manuscript provides an overview of the current state of the art in terms of the molecular modelling of the thermophysical properties of fluids. It is intended to manage the expectations and serve as guidance to practising physical chemists, chemical physicists and engineers in terms of the scope and accuracy of the more commonly available intermolecular potentials along with the peculiarities of the software and methods employed in molecular simulations while providing insights on the gaps and opportunities available in this field. The discussion is focused around case studies which showcase both the precision and the limitations of frequently used workflows.

3.
J Am Chem Soc ; 135(16): 6107-21, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23480097

RESUMO

Density functional theory (DFT) and infrared spectroscopy results are combined with mechanism-based rate equations to assess the structure and thermodynamics of chemisorbed CO (CO*) and its activation during Fischer-Tropsch synthesis (FTS). CO* binding becomes weaker with increasing coverage on Ru(0001) and Ru201 clusters, but such decreases in binding energy occur at higher coverages on Ru201 clusters than on Ru(0001) surfaces (CO*/Ru = 1.55 to 0.75); such differences appear to reflect weaker repulsive interactions on the curved surfaces prevalent on small Ru201 clusters. Ru201 clusters achieve stable supramonolayer coverages (CO*/Ru > 1) by forming geminal dicarbonyls at low-coordination corner/edge atoms. CO* infrared spectra on Ru/SiO2 (~7 nm diameter) detect mobile adlayers that anneal into denser structures at saturation. Mechanism-based FTS rate equations give activation energies that reflect the CO*-saturated surfaces prevalent during catalysis. DFT-derived barriers show that CO* predominantly reacts at (111) terraces via H-assisted reactions, consistent with measured effects of H2 and CO pressures and cluster size effects on rates and O-rejection selectivities. Barriers are much higher for unassisted CO* dissociation on (111) terraces and low-coordination atoms, including step-edge sites previously proposed as active sites for CO* dissociation during FTS. DFT-derived barriers indicate that unassisted CO* dissociation is irreversible, making such steps inconsistent with measured rates. The modest activation barriers of H-assisted CO* dissociation paths remove a requirement for special low-coordination sites for unassisted CO* activation, which is inconsistent with higher rates on larger clusters. These conclusions seem generally applicable to Co, Fe, and Ru catalysts, which show similar FTS rate equations and cluster size effects. This study also demonstrates the feasibility and relevance of DFT treatments on the curved and crowded cluster surfaces where catalysis occurs.

4.
J Am Chem Soc ; 135(41): 15425-42, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24083571

RESUMO

Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd(2+)-O(2-)) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd(2+)-O(2-) pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C···Pd···H)(‡) transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3(•)···*OH)(‡) that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd(2+) and vicinal O(2-), Pd(ox)-O(ox), cleave C-H bonds heterolytically via σ-bond metathesis, with Pd(2+) adding to the C-H bond, while O(2-) abstracts the H-atom to form a four-center (H3C(δ-)···Pd(ox)···H(δ+)···O(ox))(‡) transition state without detectable Pd(ox) reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory and experiment, resemble those prevalent on organometallic complexes. Metal centers present on surfaces as well as in homogeneous complexes act as both nucleophile and electrophile in oxidative additions, ligands (e.g., O* on surfaces) abstract H-atoms via reductive deprotonation of C-H bonds, and metal-ligand pairs, with the pair as electrophile and the metal as nucleophile, mediate σ-bond metathesis pathways.

5.
J Mol Graph Model ; 125: 108606, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37660615

RESUMO

Interactive molecular dynamics simulation in virtual reality (iMD-VR) is emerging as a promising technique in molecular science. Here, we demonstrate its use in a range of fifteen applications in materials science and heterogeneous catalysis. In this work, the iMD-VR package Narupa is used with the MD package, DL_POLY [1]. We show how iMD-VR can be used to: (i) investigate the mechanism of lithium fast ion conduction by directing the formation of defects showing that vacancy transport is favoured over interstitialcy mechanisms, and (ii) guide a molecule through a zeolite pore to explore diffusion within zeolites, examining in detail the motion of methyl n-hexanoate in H-ZSM-5 zeolite and identifying bottlenecks restricting diffusion. iMD-VR allows users to manipulate these systems intuitively, to drive changes in them and observe the resulting changes in structure and dynamics. We make these simulations available, as a resource for both teaching and research. All simulation files, with videos, can be found online (https://doi.org/10.5281/zenodo.8252314) and are provided as open-source material.


Assuntos
Simulação de Dinâmica Molecular , Realidade Virtual , Catálise , Difusão , Ésteres , Lítio
6.
J Am Chem Soc ; 133(40): 15958-78, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21919447

RESUMO

Kinetic and isotopic data and density functional theory treatments provide evidence for the elementary steps and the active site requirements involved in the four distinct kinetic regimes observed during CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants on Pt clusters. These four regimes exhibit distinct rate equations because of the involvement of different kinetically relevant steps, predominant adsorbed species, and rate and equilibrium constants for different elementary steps. Transitions among regimes occur as chemisorbed oxygen (O*) coverages change on Pt clusters. O* coverages are given, in turn, by a virtual O(2) pressure, which represents the pressure that would give the prevalent steady-state O* coverages if their adsorption-desorption equilibrium was maintained. The virtual O(2) pressure acts as a surrogate for oxygen chemical potentials at catalytic surfaces and reflects the kinetic coupling between C-H and O═O activation steps. O* coverages and virtual pressures depend on O(2) pressure when O(2) activation is equilibrated and on O(2)/CH(4) ratios when this step becomes irreversible as a result of fast scavenging of O* by CH(4)-derived intermediates. In three of these kinetic regimes, C-H bond activation is the sole kinetically relevant step, but occurs on different active sites, which evolve from oxygen-oxygen (O*-O*), to oxygen-oxygen vacancy (O*-*), and to vacancy-vacancy (*-*) site pairs as O* coverages decrease. On O*-saturated cluster surfaces, O*-O* site pairs activate C-H bonds in CH(4) via homolytic hydrogen abstraction steps that form CH(3) groups with significant radical character and weak interactions with the surface at the transition state. In this regime, rates depend linearly on CH(4) pressure but are independent of O(2) pressure. The observed normal CH(4)/CD(4) kinetic isotope effects are consistent with the kinetic-relevance of C-H bond activation; identical (16)O(2)-(18)O(2) isotopic exchange rates in the presence or absence of CH(4) show that O(2) activation steps are quasi-equilibrated during catalysis. Measured and DFT-derived C-H bond activation barriers are large, because of the weak stabilization of the CH(3) fragments at transition states, but are compensated by the high entropy of these radical-like species. Turnover rates in this regime decrease with increasing Pt dispersion, because low-coordination exposed Pt atoms on small clusters bind O* more strongly than those that reside at low-index facets on large clusters, thus making O* less effective in H-abstraction. As vacancies (*, also exposed Pt atoms) become available on O*-covered surfaces, O*-* site pairs activate C-H bonds via concerted oxidative addition and H-abstraction in transition states effectively stabilized by CH(3) interactions with the vacancies, which lead to much higher turnover rates than on O*-O* pairs. In this regime, O(2) activation becomes irreversible, because fast C-H bond activation steps scavenge O* as it forms. Thus, O* coverages are set by the prevalent O(2)/CH(4) ratios instead of the O(2) pressures. CH(4)/CD(4) kinetic isotope effects are much larger for turnovers mediated by O*-* than by O*-O* site pairs, because C-H (and C-D) activation steps are required to form the * sites involved in C-H bond activation. Turnover rates for CH(4)-O(2) reactions mediated by O*-* pairs decrease with increasing Pt dispersion, as in the case of O*-O* active structures, because stronger O* binding on small clusters leads not only to less reactive O* atoms, but also to lower vacancy concentrations at cluster surfaces. As O(2)/CH(4) ratios and O* coverages become smaller, O(2) activation on bare Pt clusters becomes the sole kinetically relevant step; turnover rates are proportional to O(2) pressures and independent of CH(4) pressure and no CH(4)/CD(4) kinetic isotope effects are observed. In this regime, turnover rates become nearly independent of Pt dispersion, because the O(2) activation step is essentially barrierless. In the absence of O(2), alternate weaker oxidants, such as H(2)O or CO(2), lead to a final kinetic regime in which C-H bond dissociation on *-* pairs at bare cluster surfaces limit CH(4) conversion rates. Rates become first-order in CH(4) and independent of coreactant and normal CH(4)/CD(4) kinetic isotope effects are observed. In this case, turnover rates increase with increasing dispersion, because low-coordination Pt atoms stabilize the C-H bond activation transition states more effectively via stronger binding to CH(3) and H fragments. These findings and their mechanistic interpretations are consistent with all rate and isotopic data and with theoretical estimates of activation barriers and of cluster size effects on transition states. They serve to demonstrate the essential role of the coverage and reactivity of chemisorbed oxygen in determining the type and effectiveness of surface structures in CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants, as well as the diversity of rate dependencies, activation energies and entropies, and cluster size effects that prevail in these reactions. These results also show how theory and experiments can unravel complex surface chemistries on realistic catalysts under practical conditions and provide through the resulting mechanistic insights specific predictions for the effects of cluster size and surface coordination on turnover rates, the trends and magnitude of which depend sensitively on the nature of the predominant adsorbed intermediates and the kinetically relevant steps.

7.
J Am Chem Soc ; 133(12): 4498-517, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21366255

RESUMO

Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis at conditions typical of its industrial practice. CO oxidation turnover rates and the dynamics and thermodynamics of adsorption-desorption processes on cluster surfaces saturated with chemisorbed CO were measured on 1-20 nm Pt clusters under conditions of strict kinetic control. Turnover rates are proportional to O(2) pressure and inversely proportional to CO pressure, consistent with kinetically relevant irreversible O(2) activation steps on vacant sites present within saturated CO monolayers. These conclusions are consistent with the lack of isotopic scrambling in C(16)O-(18)O(2)-(16)O(2) reactions, and with infrared bands for chemisorbed CO that did not change within a CO pressure range that strongly influenced CO oxidation turnover rates. Density functional theory estimates of rate and equilibrium constants show that the kinetically relevant O(2) activation steps involve direct O(2)* (or O(2)) reactions with CO* to form reactive O*-O-C*=O intermediates that decompose to form CO(2) and chemisorbed O*, instead of unassisted activation steps involving molecular adsorption and subsequent dissociation of O(2). These CO-assisted O(2) dissociation pathways avoid the higher barriers imposed by the spin-forbidden transitions required for unassisted O(2) dissociation on surfaces saturated with chemisorbed CO. Measured rate parameters for CO oxidation were independent of Pt cluster size; these parameters depend on the ratio of rate constants for O(2) reactions with CO* and CO adsorption equilibrium constants, which reflect the respective activation barriers and reaction enthalpies for these two steps. Infrared spectra during isotopic displacement and thermal desorption with (12)CO-(13)CO mixtures showed that the binding, dynamics, and thermodynamics of CO chemisorbed at saturation coverages do not depend on Pt cluster size in a range that strongly affects the coordination of Pt atoms exposed at cluster surfaces. These data and their theoretical and mechanistic interpretations indicate that the remarkable structure insensitivity observed for CO oxidation reactions reflects average CO binding properties that are essentially independent of cluster size. Theoretical estimates of rate and equilibrium constants for surface reactions and CO adsorption show that both parameters increase as the coordination of exposed Pt atoms decreases in Pt(201) cluster surfaces; such compensation dampens but does not eliminate coordination and cluster size effects on measured rate constants. The structural features and intrinsic non-uniformity of cluster surfaces weaken when CO forms saturated monolayers on such surfaces, apparently because surfaces and adsorbates restructure to balance CO surface binding and CO-CO interaction energies.


Assuntos
Monóxido de Carbono/química , Nanopartículas Metálicas/química , Platina/química , Adsorção , Óxido de Alumínio/química , Catálise , Oxirredução , Oxigênio/química , Tamanho da Partícula , Propriedades de Superfície
8.
Chem Commun (Camb) ; 55(92): 13804-13807, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31633709

RESUMO

Methyl carboxylate esters can be used as additives to promote the zeolite catalysed formation of dimethly ether (DME) from methanol. By taking advantage of the well-known confinement effect in combination with further functionalisation the potency of the promoter can be markedly enhanced, giving significant increases in DME yield at promoter concentrations as low as 10 ppm relative to methanol. The promotion is readily reversible and promoter concentration can be used to fine tune the zeolite productivity to DME.

9.
J Phys Chem B ; 110(21): 10479-84, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16722757

RESUMO

Research for materials offering efficient hydrogen storage and transport has recently received increased attention. Metal organic frameworks (MOFs) provide one promising group of materials where several recent advances were reported in this direction. In this computational study ab initio methods are employed to study the physisorption of hydrogen on conjugated systems. These systems are used as models for the organic linker within MOFs. Here, we focus on the adsorption sites related to the organic linker with special attention to the edge site, which was only recently reported to exist as the weakest adsorbing site in MOFs. We also investigate chemically modified models of the organic connector that result in enforcing this adsorption site. This may be crucial for improving the uptake properties of these materials to the goal defined by DOE for efficient hydrogen transport materials.

10.
Inorg Chem ; 46(23): 9715-35, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-17939653

RESUMO

Treatment of (DME)Cl2Mo(=NR)2 (R=tBu, (1-tBu), tAmyl (1-tAmyl)) with 2 equiv of tBu3SiOH (siloxH) and 1 equiv of HCl produced (silox)2Cl2Mo=NR (R=tBu, (3-tBu), tAmyl (3-tAmyl)); subsequent reduction by Na/Hg afforded the Mo(V) chloride, (silox)2ClMo=NtBu (4-tBu), and the Mo(IV) mercury derivatives, [(silox)2Mo=NR]2Hg (R=tBu ((5-tBu)2Hg), tAmyl ((5-tAmyl)2Hg)). Reductions of 3-tBu and 3-tAmyl in the presence of L (L=PMe3, pyridine, 4-picoline) led to the isolation of adducts (silox)2(Me3P)Mo=NR (R=tBu (6-tBu), tAmyl (6-tAmyl)) and (silox)2L2Mo=NtBu (L=py (7-py), 4-pic (7-4-pic)). Single-crystal X-ray structural investigations of pseudo-tetrahedral 4-tBu, Hg-capped, pseudo-trigonal planar (5-tBu)2Hg, pseudo-tetrahedral 6-tBu, and trigonal bipyramidal 7-4-pic reveal that all possess a closed O-Mo-O angle when compared to the N=Mo-O angles. A molecular orbital rationale and supporting calculations suggest that this is a manifestation of the greater pi-donating ability of the imido relative to that of the siloxides. While the D(Mo-Hg) of [(HO)2Mo=NH]2Hg ((5')2Hg) was calculated to be 22.4 kcal/mol, (5-R)2Hg (R=tBu, tAmyl) are remarkably stable; (5-tBu)2Hg degraded in a first-order fashion with DeltaG=31.9(1) kcal/mol. In the presence of strong (L=PMe, pyridine, S8) or weak (L=2-butyne, ethylene, N2O, 1,4,7,10-tetrathiacyclododecane, 1,4,7,10,13,16-hexathiacyclooctadecane) nucleophiles, an enhanced rate of Mo-Hg bond cleavage was noted, with some of the former group generating adducts in <5 min; the products were 6-tBu, 7-py, (silox)2(S)Mo=NtBu (10-tBu), (silox)2Mo=NtBu(C2Me2) (8-tBu), (silox)2(C2H4)Mo=NtBu (11-tBu), (silox)2(O)Mo=NtBu (9-tBu), and a mixture of 10-tBu and 11-tBu, respectively. Some of these were independently prepared via substitution of 6-tBu. According to calculations and a molecular orbital rationale, dissociation of the Mo-Hg bond in (5-R)2Hg (R=tBu, tAmyl) is orbitally forbidden, and the addition of a nucleophile to the terminus of the Mo-Hg-Mo linkage mitigates the symmetry requirements. The mechanism of thermal degradation was studied with mixed success. NMR spectroscopy revealed imido exchange between (5-tBu)2Hg and (5-tAmyl)2Hg during an initial induction period and a subsequent rapid exchange period that implicated free 5-R (R=tBu, tAmyl). Further crossover studies revealed siloxide exchange as an additional complication.

11.
Inorg Chem ; 44(8): 2606-18, 2005 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-15819545

RESUMO

Treatment of CrCl(2)(THF)(2) with NaOSi(t)Bu(3) afforded the tetrameric "box" [Cr(mu-Cl)(mu-OSi(t)Bu(3))](4) (1, X-ray). THF cleaved 1 to provide trans-(silox)ClCr(THF)(2) (2), whereas degradation of 1 with 4-picoline caused disproportionation and the generation of trans-Cl(2)Cr(4-pic)(2) and trans-(silox)(2)Cr(4-pic)(x) (n = 2, 3; 3, 3-4-pic). Chromous centers in 1 were antiferromagnetically coupled, and density functional calculations on the high-spin (multiplicity = 17) model [Cr(mu-Cl)(mu-OH)](4) (1') revealed that its singly occupied 3d orbitals spanned an energy range of approximately 2 eV. The addition of 8 equiv of Na(silox) to 1 yielded [((t)Bu(3)SiO)Cr(mu-OSi(t)Bu(3))(2)]Na.C(6)H(6) (4, Y shaped, angle OCrO(Na) = 91.28(7) degrees), and treatment of 4 with dibenzo-18-crown-6 produced [(silox)(3)Cr][Na(dibenzo-18-crown-6)] (5, angle OCrO = approximately 120 degrees, (120 + alpha) degrees, (120 - alpha) degrees). Calculations of [((t)Bu(3)SiO)Cr(mu-OSi(t)Bu(3))(2)]Na (4') and Cr(silox)(3)(-) (5') provided reasonable matches with the experimental geometries (X-ray). The trigonal chromic derivative (silox)(3)Cr (6) was synthesized from CrCl(3)(THF)(3) for structural and calculational comparisons to the chromous derivatives.

12.
J Chem Inf Model ; 45(4): 965-70, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16045290

RESUMO

Several hypotheses to elucidate the linkage isomer preference of the thiocyanate (SCN(-)) ion have been offered. For complexes with small coordination numbers (i.e., 1 and 2) and groups 11 (Cu-triad) and 12 (Zn-triad) metals, different levels of theory and a variety of basis sets have been employed to study linkage isomerism. Similar results are obtained for all density functionals tested, pure and hybrid. Overall, good agreement, vis-à-vis experimentally identified linkage isomers, is achieved for ab initio techniques, whereas semiempirical quantum mechanical methods show a bias toward S-ligated isomers. Despite the seeming ease for the a priori prediction of the most stable thiocyanate isomers using acid/base principles, this research highlights the sensitivity of quantitative calculations of transition-metal linkage isomerism to the choice of basis set and electron correlation, particularly with post-Hartree-Fock treatments.

13.
J Am Chem Soc ; 127(23): 8262-3, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15941241

RESUMO

Na/Hg reduction of (silox)2Cl2Mo=NtBu (3) afforded C2h [(silox)2Mo=NtBu]2(mu-Hg) (12-Hg), which consists of two distorted trigonal monoprisms with Hg at the each apex (d(MoHg) = 2.6810(5) A). Calculations reveal 3c4e bonding in the linear MoHgMo linkage that renders 12-Hg susceptible to nucleophilic cleavage. Exposure to PMe3 and pyridine rapidly (<5 min) affords (silox)2(tBuN)MoLn (L = PMe3, n = 1 (1-PMe3); py, n = 2 (1-py2)), while poorer nucleophiles (L = C2H4, 2-butyne) yield adducts (e.g., 1-C2H4 and 1-C2Me2) after prolonged heating. The HOMO and LUMO of 12-Hg are "stretched" pi and pi* orbitals from which four states arise: 1Ag (GS), 3Bu, 1Bu, and 1Ag. DeltaE = E(1Bu) - E(3Bu) = 2K, where K is the exchange energy. Magnetic studies indicate E(3Bu) - E(1Ag) approximately 550 cm-1 (calcd 1744 cm-1), and a UV-vis absorption at 10 000 cm-1 is assigned to 1Ag --> 1Bu, permitting K to be evaluated as 4725 cm-1. With the pi --> pi* transition in Schrock's [Mo(NAr)(CH2tBu)(OC6F5)]2 (4) assigned at 528 nm, this estimation places its pi-bond energy as {E(pi2 --> pi1pi*1 in 4) - E(1Ag --> 1Bu in 12-Hg)} + E(1Ag --> 3Bu in 12-Hg) = 27 kcal/mol.

14.
Inorg Chem ; 41(8): 2060-9, 2002 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-11952359

RESUMO

De novo structural prediction of transition metal complexes is investigated. Technetium complexes are chosen given their importance in medical imaging and nuclear waste remediation and for the chemical diversity they display. A new conformational searching algorithm (LIGB) for transition metals is described that allows one to search for different conformational and geometric isomers within a single simulation. In the preponderance of cases, both conformational searching techniques (LIGB and high-temperature molecular dynamics/simulated annealing) provide comparable results, while LIGB is superior for macrocyclic complexes. A genetic algorithm-optimized PM3(tm) parametrization for Tc is compared with the standard implementation and found to yield a significant improvement in predictive ability for the most prevalent Tc structural motifs. The utility of a coupled molecular mechanics-semiempirical quantum mechanics protocol is demonstrated for very rapid, efficient, and effective de novo prediction of transition metal complex geometries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA