Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 15(9): 6071-5, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26241305

RESUMO

The properties that distinguish topological crystalline insulator (TCI) and topological insulator (TI) rely on crystalline symmetry and time-reversal symmetry, respectively, which encodes different bulk and surface/edge properties. Here, we predict theoretically that electron-doped TlM (M = S and Se) (110) monolayers realize a family of two-dimensional (2D) TCIs characterized by mirror Chern number CM = -2. Remarkably, under uniaxial strain (≈ 1%), a topological phase transition between 2D TCI and 2D TI is revealed with the calculated spin Chern number CS = -1 for the 2D TI. Using spin-resolved edge states analysis, we show different edge-state behaviors, especially at the time reversal invariant points. Finally, a TlBiSe2/NaCl quantum well is proposed to realize an undoped 2D TCI with inverted gap as large as 0.37 eV, indicating the high possibility for room-temperature observation.

2.
Nat Commun ; 10(1): 3179, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320628

RESUMO

The concepts of Weyl fermions and topological semimetals emerging in three-dimensional momentum space are extensively explored owing to the vast variety of exotic properties that they give rise to. On the other hand, very little is known about semimetallic states emerging in two-dimensional magnetic materials, which present the foundation for both present and future information technology. Here, we demonstrate that including the magnetization direction into the topological analysis allows for a natural classification of topological semimetallic states that manifest in two-dimensional ferromagnets as a result of the interplay between spin-orbit and exchange interactions. We explore the emergence and stability of such mixed topological semimetals in realistic materials, and point out the perspectives of mixed topological states for current-induced orbital magnetism and current-induced domain wall motion. Our findings pave the way to understanding, engineering and utilizing topological semimetallic states in two-dimensional spin-orbit ferromagnets.

3.
Sci Rep ; 7: 46742, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440289

RESUMO

As the inversion symmetry is broken at a surface, spin-orbit interaction gives rise to spin-dependent energy shifts - a phenomenon which is known as the spin Rashba effect. Recently, it has been recognized that an orbital counterpart of the spin Rashba effect - the orbital Rashba effect - can be realized at surfaces even without spin-orbit coupling. Here, we propose a mechanism for the orbital Rashba effect based on sp orbital hybridization, which ultimately leads to the electric polarization of surface states. For the experimentally well-studied system of a BiAg2 monolayer, as a proof of principle, we show from first principles that this effect leads to chiral orbital textures in k-space. In predicting the magnitude of the orbital moment arising from the orbital Rashba effect, we demonstrate the crucial role played by the Berry phase theory for the magnitude and variation of the orbital textures. As a result, we predict a pronounced manifestation of various orbital effects at surfaces, and proclaim the orbital Rashba effect to be a key platform for surface orbitronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA