RESUMO
The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.
Assuntos
Células Endoteliais , Degeneração Macular , Humanos , Células Endoteliais/metabolismo , Corioide/metabolismo , Retina/metabolismo , Lâmina Basilar da Corioide/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , AutofagiaRESUMO
Blue light is known to be antimicrobial, but its effect on normal cutaneous and subcutaneous cells remains unclear. Therefore, we studied the effect of 470-nm light on the viability of adult and neonatal human dermal fibroblasts, Jurkat T-cells, and THP-1 monocytes in vitro. Each culture was irradiated with 0, 3, 55, or 110 J/cm2 of 470-nm light and subjected to trypan blue assay to ascertain viability. Further, MTT, neutral red, and fluorescence assays of fibroblasts were performed, and cell morphology visualized using bright field and fluorescence microscopy. At each dose and in each of the four cell lines, there was no significant difference in cell concentration between irradiated and non-irradiated cultures, even though irradiation with 55 J/cm2 or 110 J/cm2 slightly decreased cell count. Light microscopy showed progressive morphological changes in the fibroblasts as energy fluence increased from 55 to 110 J/cm2. Irradiation at 3 J/cm2 produced a slight but non-significant increase in the viability of Jurkat T-cells and THP-1 monocytes. In contrast, at 110 J/cm2 radiant exposure, irradiation slightly decreased the viability of all four cells. While 3 J/cm2 appears stimulatory, our finding that 110 J/cm2 produces a slight decrease in viability and engenders morphological changes in fibroblasts, suggesting that such high doses should be avoided in blue light treatments.
Assuntos
Fibroblastos , Terapia com Luz de Baixa Intensidade , Proliferação de Células , Sobrevivência Celular , Humanos , LuzRESUMO
BACKGROUND: Plasmodium falciparum, the deadliest causative agent of malaria, has high prevalence in Nigeria. Drug resistance causing failure of previously effective drugs has compromised anti-malarial treatment. On this basis, there is need for a proactive surveillance for resistance markers to the currently recommended artemisinin-based combination therapy (ACT), for early detection of resistance before it become widespread. METHODS: This study assessed anti-malarial resistance genes polymorphism in patients with uncomplicated P. falciparum malaria in Lagos, Nigeria. Sanger and Next Generation Sequencing (NGS) methods were used to screen for mutations in thirty-seven malaria positive blood samples targeting the P. falciparum chloroquine-resistance transporter (Pfcrt), P. falciparum multidrug-resistance 1 (Pfmdr1), and P. falciparum kelch 13 (Pfk13) genes, which have been previously associated with anti-malarial resistance. RESULTS: Expectedly, the NGS method was more proficient, detecting six Pfmdr1, seven Pfcrt and three Pfk13 mutations in the studied clinical isolates from Nigeria, a malaria endemic area. These mutations included rare Pfmdr1 mutations, N504K, N649D, F938Y and S967N, which were previously unreported. In addition, there was moderate prevalence of the K76T mutation (34.6%) associated with chloroquine and amodiaquine resistance, and high prevalence of the N86 wild type allele (92.3%) associated with lumefantrine resistance. CONCLUSION: Widespread circulation of mutations associated with resistance to current anti-malarial drugs could potentially limit effective malaria therapy in endemic populations.
Assuntos
Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nigéria/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Prevalência , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
BACKGROUND AND OBJECTIVE: Emerging evidence suggests that blue light can photo-inactivate some bacteria of clinical importance. Consequently, we tested the hypothesis that 470 nm light can suppress growth of two recalcitrant bacteria, MRSA and Salmonella. MATERIALS AND METHODS: We plated 5 × 106 and 7 × 106 CFU/ml USA300 strain of MRSA and 1 × 106 CFU/ml of Salmonella enterica serovars Typhimurium and Heidelberg. Plates were irradiated with 55, 110, 165 and 220 J/cm2 of blue light, incubated at 37°C for 24 hours and colony counts determined. RESULTS: Compared with controls, blue light irradiation produced a significant dose-dependent reduction in the number of colonies formed by each bacterial strain (P < 0.001). Irradiation of 5 × 106 and 7 × 106 CFU/ml MRSA with 55 J/cm2 produced 92% (4.6 × 106 CFU/ml) and 86% (6 × 106 CFU/ml) inactivation respectively, while 110 and 220 J/cm2 suppressed each MRSA density 100%. Irradiation of Salmonella Typhimurium with 55 and 110 J/cm2 suppressed bacterial growth 31% (3.1 × 105 CFU/ml) and 93% (9.3 × 105 CFU/ml) respectively; while Salmonella Heidelberg was inhibited 11% (1.1 × 105 CFU/ml) and 84% (8.4 × 105 CFU/ml) respectively by the two fluences. Complete inactivation of each Salmonella strain was achieved using 165 or 220 J/cm2 . CONCLUSION: The observed inhibition of Gram-positive (MRSA) and Gram-negative (Salmonella) bacteria suggests the versatility of blue light in bacteria eradication, making it a viable intervention strategy for decontamination of food and environments that harbor such bacteria. Lasers Surg. Med. 47:595-601, 2015. © 2015 Wiley Periodicals, Inc.
RESUMO
BACKGROUND AND OBJECTIVE: In previous studies, we showed that irradiation with 405 nm or 470 nm light suppresses up to 92% methicillin-resistant Staphylococcus aureus (MRSA) growth in vitro and that the remaining bacteria re-colonize. In this study, the aim was to develop a protocol that yields 100% MRSA growth suppression. MATERIALS AND METHODS: We cultured 3 × 10(6) and 5 × 10(6) CFU/ml USA300 strain of MRSA and then irradiated each plate with varying fluences of 1-60 J/cm2 of 405 nm or 470 nm light, either once or twice at 6 hours intervals. Next, we plated 7 × 10(6) CFU/ml and irradiated it with 45, 50, 55, or 60 J/cm2 fluence, once, twice, or thrice at the same 6 hours intervals. In a third experiment, the same culture density was irradiated with 0, 165, 180, 220, or 240 J/cm(2) , either once, twice, or thrice. RESULTS: Irradiation with either wavelength significantly reduced the bacterial colonies regardless of bacterial density (P < 0.05). At 3 × 10(6) CFU/ml density, nearly 40% and 50% growth of MRSA were suppressed with as little as 3 J/cm2 of 405 nm and 470 nm wavelengths, respectively. Moreover, 100% of the colonies were suppressed with a single exposure to 55 or 60 J/cm2 of 470 nm light or double treatment with 50, 55, or 60 J/cm2 of 405 nm wavelength. At 5 × 10(6) CFU/ml density, irradiating twice with 50, 55, or 60 J/cm2 of either wavelength suppressed bacterial growth completely, lower fluences did not. The denser 7 × 10(6) CFU/ml culture required higher doses to achieve 100% suppression, either one shot with 220 J/cm2 of 470 nm light or two shots of the same dose using 405 nm. CONCLUSION: The bactericidal effect of blue light can be optimized to yield 100% bacterial growth suppression, but with relatively high fluences for dense bacterial cultures, such as 7 × 10(6) CFU/ml.
Assuntos
Luz , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Contagem de Colônia MicrobianaRESUMO
It has long been argued that light from a laser diode is superior to light from a light-emitting diode (LED) in terms of its effect on biological tissues. In order to shed light on this ongoing debate, we compared the antimicrobial effect of light emitted from a 405-nm LED with that of a 405-nm laser on methicillin-resistant Staphylococcus aureus (MRSA) at comparable fluences. We cultured 5 × 10(6) CFU/ml MRSA on tryptic soy agar and then irradiated culture plates once, twice, or thrice with either LED or laser light using 40, 54, 81, or 121 J/cm(2) fluence at 15-, 30-, or 240-min time interval between irradiation. Cultures were incubated immediately after irradiation at 37 °C for 24 h before imaging and counting remnant bacterial colonies. Regardless of the device used, LED or laser, irradiation at each fluence resulted in statistically significant bacterial growth suppression compared to non-irradiated controls (p < 0.0001). The antimicrobial effect of both light sources, LED and laser, was not statistically different at each fluence in 35 of the 36 experimental trials. Bacterial growth suppression achieved with either source of light increased with repeated irradiation, particularly at the 15- or 30-min treatment time interval. Thus, we conclude that the antimicrobial effect of 405-nm laser and 405-nm LED on MRSA is similar; neither has a superior antimicrobial effect when compared to the other.
Assuntos
Lasers , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Semicondutores , Carga Bacteriana , Staphylococcus aureus Resistente à Meticilina/fisiologia , Fatores de TempoRESUMO
It has been shown that, in vitro, hyperbaric oxygen (HBO) suppresses 28 % bacterial growth, while 470-nm blue light alone suppresses up to 92 % methicillin-resistant Staphylococcus aureus (MRSA) in one application in vitro. Therefore, we determined if combined 470-nm light (55 J/cm(2)) and HBO will yield 100 % bacterial suppression in experimental simulation of mild, moderate or severe MRSA infection. We cultured MRSA at 3 × 10(6), 5 × 10(6), 7 × 10(6), 8 × 10(6), or 12 × 10(6) CFU/ml and treated each concentration in four groups as follows: (1) control (no treatment) (2) photo-irradiation only, (3) photo-irradiation then HBO, (4) HBO only, and (5) HBO then photo-irradiation. Bacteria colonies were then quantified. The results showed that at each bacterial concentration, HBO alone was significantly less effective in suppressing MRSA than photo-irradiation or combined HBO and photo-irradiation (p < 0.0001). Similarly, at no bacterial concentration did combined HBO and 470-nm light treatment yield a statistically better result than 470-nm light alone (p > 0.05), neither did HBO treatment either before or after irradiation make a difference. Furthermore, at no bacterial concentration was 100 % MRSA suppression achieved. Indeed, the maximum bacterial suppression attained was in the mild infection model (3 × 10(6) CFU/ml), with blue light producing 97.3 ± 0.2 % suppression and HBO + 55 J/cm(2) yielding 97.5 ± 2.5 % suppression. We conclude that (1) HBO and 470-nm light individually suppress MRSA growth; (2) 470-nm blue light is more effective in suppressing MRSA than HBO; and (3) HBO did not act synergistically to heighten the bactericidal effect of 470-nm light.
Assuntos
Antibacterianos/farmacologia , Luz , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Oxigênio/farmacologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , PressãoRESUMO
BACKGROUND: Malaria in Cameroon is due to infections by Plasmodium falciparum and, to a lesser extent, Plasmodium malariae and Plasmodium ovale, but rarely Plasmodium vivax. A recent report suggested "Plasmodium vivax-like" infections around the study area that remained unconfirmed. Therefore, molecular and antigenic typing was used to investigate the prevalence of P. vivax and Duffy in asymptomatic adults resident in Bolifamba. METHODS: A cross-sectional study was conducted from July 2008 to October 2009. The status of all parasite species was determined by nested PCR in 269 blood samples collected. The P. falciparum and P. vivax anti-MSP/CSP antibody status of each subject was also determined qualitatively by a rapid card assay. Parasite DNA was extracted from a sample infected with three parasite species, purified and sequenced. The Duffy antigen status of 12 subjects infected with P. vivax was also determined by sequencing. In silico web-based tools were used to analyse sequence data for similarities and matches to reference sequences in public DNA databases. RESULTS: The overall malaria parasite prevalence in 269 individuals was 32.3% (87) as determined by PCR. Remarkably, 14.9% (13/87) of infections were caused either exclusively or concomitantly by P. vivax, established both by PCR and microscopic examination of blood smears, in individuals both positive (50%, 6/12) and negative (50%, 6/12) for the Duffy receptor. A triple infection by P. falciparum, P. vivax and P. malariae, was detected in one infected individual. Anti-MSP/CSP antibodies were detected in 72.1% (194/269) of samples, indicating high and continuous exposure to infection through mosquito bites. DISCUSSION: These data provide the first molecular evidence of P. vivax in Duffy positive and negative Cameroonians and suggest that there may be a significant prevalence of P. vivax infection than expected in the study area. Whether the P. vivax cases were imported or due to expansion of a founder effect was not investigated. Notwithstanding, the presence of P. vivax may complicate control efforts if these parasites become hypnozoitic or latent as the liver stage. CONCLUSIONS: These data strongly suggest that P. vivax is endemic to the south-west region of Cameroon and should be taken into account when designing malaria control strategies.
Assuntos
Doenças Assintomáticas/epidemiologia , Malária/epidemiologia , Malária/parasitologia , Tipagem Molecular , Plasmodium/classificação , Plasmodium/isolamento & purificação , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Camarões/epidemiologia , Estudos Transversais , DNA de Protozoário/genética , Sistema do Grupo Sanguíneo Duffy/genética , Feminino , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Prevalência , População Rural , Adulto JovemRESUMO
Defective autophagy in the retinal pigment epithelium (RPE) is involved in retinal degeneration, mostly in the course of age-related macular degeneration (AMD), which is an increasingly prevalent retinal disorder, eventually leading to blindness. However, most autophagy activators own serious adverse effects when administered systemically. Curcumin is a phytochemical, which induces autophagy with a wide dose-response curve, which brings minimal side effects. Recent studies indicating defective autophagy in AMD were analyzed. Accordingly, in this perspective, we discuss and provide some evidence about the protective effects of curcumin in preventing RPE cell damage induced by the autophagy inhibitor 3-methyladenine (3-MA). Cells from human RPE were administered the autophagy inhibitor 3-MA. The cell damage induced by 3-MA was assessed at light microscopy by hematoxylin & eosin, Fluoro Jade-B, and ZO1 immunohistochemistry along with electron microscopy. The autophagy inhibitor 3-MA produces cell loss and cell degeneration of RPE cells. These effects are counteracted dose-dependently by curcumin. In line with the hypothesis that the autophagy machinery is key in sustaining the integrity of the RPE, here we provide evidence that the powerful autophagy inhibitor 3-MA produces dose-dependently cell loss and cell degeneration in cultured RPE cells, while inhibiting autophagy as shown by LC3-II/LC3-I ratio and gold-standard assessment of autophagy through LC3-positive autophagy vacuoles. These effects are prevented dose-dependently by curcumin, which activates autophagy. These data shed the perspective of validating the role of phytochemicals as safe autophagy activators to treat AMD.
Assuntos
Curcumina , Degeneração Macular , Degeneração Retiniana , Humanos , Epitélio Pigmentado da Retina/metabolismo , Degeneração Retiniana/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Autofagia/fisiologia , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Estresse OxidativoRESUMO
The seminal role of autophagy during age-related macular degeneration (AMD) lies in the clearance of a number of reactive oxidative species that generate dysfunctional mitochondria. In fact, reactive oxygen species (ROS) in the retina generate misfolded proteins, alter lipids and sugars composition, disrupt DNA integrity, damage cell organelles and produce retinal inclusions while causing AMD. This explains why autophagy in the retinal pigment epithelium (RPE), mostly at the macular level, is essential in AMD and even in baseline conditions to provide a powerful and fast replacement of oxidized molecules and ROS-damaged mitochondria. When autophagy is impaired within RPE, the deleterious effects of ROS, which are produced in excess also during baseline conditions, are no longer counteracted, and retinal degeneration may occur. Within RPE, autophagy can be induced by various stimuli, such as light and naturally occurring phytochemicals. Light and phytochemicals, in turn, may synergize to enhance autophagy. This may explain the beneficial effects of light pulses combined with phytochemicals both in improving retinal structure and visual acuity. The ability of light to activate some phytochemicals may further extend such a synergism during retinal degeneration. In this way, photosensitive natural compounds may produce light-dependent beneficial antioxidant effects in AMD.
RESUMO
In a recent study, we showed that pulsed blue light (PBL) inactivates as much as 52.3% of human beta coronavirus HCoV-OC43, a surrogate of SARS-CoV-2, and one of the major strains of viruses responsible for the annual epidemic of the common cold. Since curcumin and saliva are similarly antiviral and curcumin acts as blue light photosensitizer, we used Qubit fluorometry and WarmStart RT-LAMP assays to study the effect of combining 405 nm, 410 nm, 425 nm or 450 nm wavelengths of PBL with curcumin, saliva or a combination of curcumin and saliva against human beta coronavirus HCoV-OC43. The results showed that PBL, curcumin and saliva independently and collectively inactivate HCoV-OC43. Without saliva or curcumin supplementation 21.6 J/cm2 PBL reduced HCoV-OC43 RNA concentration a maximum of 32.8% (log10 = 2.13). Saliva supplementation alone inactivated the virus, reducing its RNA concentration by 61% (log10 = 2.23); with irradiation the reduction was as much as 79.1%. Curcumin supplementation alone decreased viral RNA 71.1%, and a maximum of 87.8% with irradiation. The combination of saliva and curcumin reduced viral RNA to 83.1% and decreased the RNA up to 90.2% with irradiation. The reduced levels could not be detected with qPCR. These findings show that PBL in the range of 405 nm to 450 nm wavelength is antiviral against human coronavirus HCoV-OC43, a surrogate of the COVID-19 virus. Further, it shows that with curcumin as a photosensitizer, it is possible to photodynamically inactivate the virus beyond qPCR detectable level using PBL. Since HCoV-OC43 is of the same beta coronavirus family as SARS-CoV-2, has the same genomic size, and is often used as its surrogate, these findings heighten the prospect of similarly inactivating novel coronavirus SARS-CoV-2, the virus responsible for COVID-19 pandemic.
Assuntos
Antivirais/farmacologia , COVID-19/terapia , Curcumina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , SARS-CoV-2/efeitos dos fármacos , Saliva/química , Terapia Combinada , Coronavirus Humano OC43 , Humanos , Luz , Processos Fotoquímicos , Fotoquimioterapia , RNA ViralRESUMO
Emerging evidence suggests that blue light has the potential to inactivate viruses. Therefore, we investigated the effect of 405 nm, 410 nm, 425 nm and 450 nm pulsed blue light (PBL) on human alpha coronavirus HCoV-229 E and human beta coronavirus HCoV-OC43, using Qubit fluorometry and RT-LAMP to quantitate the amount of nucleic acid in irradiated and control samples. Like SARS-CoV-2, HCoV-229E and HCoV-OC43 are single stranded RNA viruses transmitted by air and direct contact; they have similar genomic sizes as SARS-CoV-2, and are used as surrogates for SARS-CoV-2. Irradiation was carried out either at 32.4 J cm-2 using 3 mW cm-2 irradiance or at 130 J cm-2 using 12 mW cm-2 irradiance. Results: (1) At each wavelength tested, PBL was antiviral against both coronaviruses. (2) 405 nm light gave the best result, yielding 52.3% (2.37 log10) inactivation against HCoV-OC43 (p < .0001), and a significant 1.46 log 10 (44%) inactivation of HCoV-229E (p < .01). HCoV-OC43, which like SARS-CoV-2 is a beta coronavirus, was more susceptible to PBL irradiation than alpha coronavirus HCoV-229E. The latter finding suggests that PBL is potentially antiviral against multiple coronavirus strains, and that, while its potency may vary from one virus to another, it seems more antiviral against beta coronaviruses, such as HCoV-OC43. (3) Further, the antiviral effect of PBL was better at a higher irradiance than a lower irradiance, and this indicates that with further refinement, a protocol capable of yielding 100% inactivation of viruses is attainable.
Assuntos
Coronavirus Humano 229E/efeitos da radiação , Coronavirus Humano OC43/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , SARS-CoV-2/efeitos da radiação , Coronavirus Humano 229E/fisiologia , Coronavirus Humano OC43/fisiologia , Relação Dose-Resposta à Radiação , Humanos , SARS-CoV-2/fisiologiaRESUMO
BACKGROUND: In a recent study we showed that blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA) by perturbing, depolarizing, and disrupting its cell membrane. PURPOSE: The current study presents visual evidence that the observed biochemical changes also result in cell metabolic changes and structural alteration of the cell membrane. METHODS: Cultures of MRSA were treated with 450 nm pulsed blue light (PBL) at 3 mW/cm2 irradiance, using a sub lethal dose of 2.7 J/cm2 radiant exposure three times at 30-min intervals. Following 24 h incubation at 37 °C, irradiated colonies and control non-irradiated colonies were processed for light and transmission electron microscopy. RESULTS: The images obtained revealed three major effects of PBL; (1) disruption of MRSA cell membrane, (2) alteration of membrane structure, and (3) disruption of cell replication. CONCLUSION: These signs of bacterial inactivation at a dose deliberately selected to be sub-lethal supports our previous finding that rapid depolarization of bacterial cell membrane and disruption of cellular function comprise another mechanism underlying photo-inactivation of bacteria. Further, it affirms the potency of PBL.
Assuntos
Membrana Celular/efeitos da radiação , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Técnicas de Cultura de Células , Contagem de Colônia Microbiana , Relação Dose-Resposta à Radiação , Luz , Staphylococcus aureus Resistente à Meticilina/metabolismo , Viabilidade Microbiana/efeitos da radiaçãoRESUMO
INTRODUCTION: Recently, it was shown that Group B Streptococcus (GBS) COH1 strain, which has granadaene-an endogenous chromophore known to absorb blue light-is not susceptible to 450 nm pulsed blue light (PBL) inactivation unless the bacterium is co-cultured with exogenous porphyrin. PURPOSE: To confirm or refute the finding, we studied the effect of blue light on NCTC, another strain of GBS with more granadaene than COH1, to determine if the abundance of granadaene-and by implication more absorption of blue light-fosters GBS susceptibility to PBL. METHODS: We irradiated cultures of the bacterium with or without protoporphyrin, coproporphyrin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD) or NADH. After 24-h incubation, bacterial colonies were enumerated, log10 CFU/mL computed, and descriptive and inferential data analyzed and compared. RESULTS: (1) The rich amount of granadaene in NCTC did not enhance its susceptibility to antimicrobial pulsed blue light (PBL). (2) Adding exogenous porphyrin fostered NCTC susceptibility to irradiation, resulting in 100% bacterial suppression. (3) Exogenous FMN or FAD, which strongly absorb 450 nm light, did not promote the antimicrobial effect of PBL, neither did exogenous NAD or NADH, two weak blue light-absorbing photosensitizers. CONCLUSION: These results strengthen our previous assertion that an endogenous chromophore with the capacity to absorb and transform light energy into a biochemical process that engenders bacterial cell death, is essential for 450 nm PBL to suppress GBS.
Assuntos
Fármacos Fotossensibilizantes/química , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/efeitos da radiação , Apoptose/efeitos da radiação , Técnicas de Cultura de Células , Relação Dose-Resposta à Radiação , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Luz , NAD/química , Porfirinas/química , Fatores de TempoRESUMO
In our recent study, we showed that pulsed blue light (PBL) suppresses the growth of Propionibacterium acnes more than continuous wave (CW) blue light in vitro, but it is not known that other bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), respond similarly to PBL. The high potency of PBL relative to CW blue light makes it a suitable antimicrobial for suppressing bacterial growth in biofilms as well. Therefore, we determined if MRSA-a deadly bacterium of global concern-is susceptible to 450â¯nm PBL irradiation in vitro, and ascertained whether the bactericidal effect of PBL on planktonic P. acnes culture can be replicated in biofilms of P. acnes and MRSA. In three series of experiments, we irradiated P. acnes and MRSA respectively, either in planktonic cultures, forming biofilms or formed biofilms. Compared to controls, the results showed 100% bacterial suppression in planktonic cultures of MRSA irradiated with 3â¯mW/cm2 irradiance and 7.6â¯J/cm2 radiant exposure three times at 30-minute intervals, and also in P. acnes cultures irradiated with 2â¯mW/cm2 irradiance 5â¯J/cm2 radiant exposure thrice daily during each of 3â¯days. Irradiation of biofilms with the same irradiances and radiant exposures that gave 100% bacterial suppression in planktonic cultures resulted in disruption and disassembly of the architecture of MRSA and P. acnes biofilms, more so in forming biofilms than formed biofilms. The antimicrobial effect on each bacterium was minimal in forming biofilms, and even less in formed biofilms. Increasing radiant exposure slightly from 7.6â¯J/cm2 to 10.8â¯J/cm2 without changing any other parameter, yielded more disruption of the biofilm and fewer live MRSA and P. acnes, suggesting that 100% bacterial suppression is possible with further refinement of the protocol. In both planktonic cultures and biofilms, PBL suppressed MRSA more than P. acnes.
Assuntos
Biofilmes/efeitos da radiação , Luz , Staphylococcus aureus Resistente à Meticilina/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Propionibacterium acnes/efeitos da radiação , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Microscopia de Fluorescência , Propionibacterium acnes/fisiologia , TermodinâmicaRESUMO
The recent outbreak of COVID-19, which continues to ravage communities with high death tolls and untold psychosocial and catastrophic economic consequences, is a vivid reminder of nature's capacity to defy contemporary healthcare. The pandemic calls for rapid mobilization of every potential clinical tool, including phototherapy-one of the most effective treatments used to reduce the impact of the 1918 "Spanish influenza" pandemic. This paper cites several studies showing that phototherapy has immense potential to reduce the impact of coronavirus diseases, and offers suggested ways that the healthcare industry can integrate modern light technologies in the fight against COVID-19 and other infections. The evidence shows that violet/blue (400-470 nm) light is antimicrobial against numerous bacteria, and that it accounts for Niels Ryberg Finsen's Nobel-winning treatment of tuberculosis. Further evidence shows that blue light inactivates several viruses, including the common flu coronavirus, and that in experimental animals, red and near infrared light reduce respiratory disorders, similar to those complications associated with coronavirus infection. Moreover, in patients, red light has been shown to alleviate chronic obstructive lung disease and bronchial asthma. These findings call for urgent efforts to further explore the clinical value of light, and not wait for another pandemic to serve as a reminder. The ubiquity of inexpensive light emitting lasers and light emitting diodes (LEDs), makes it relatively easy to develop safe low-cost light-based devices with the potential to reduce infections, sanitize equipment, hospital facilities, emergency care vehicles, homes, and the general environment as pilot studies have shown.
Assuntos
Infecções por Coronavirus/terapia , Fototerapia , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Helioterapia , Humanos , Raios Infravermelhos , Luz , Terapia com Luz de Baixa Intensidade , Pneumopatias/epidemiologia , Pneumopatias/terapia , Pneumopatias/virologia , Pandemias , Fototerapia/métodos , Pneumonia ViralRESUMO
Propionibacterium acnes infection is the eighth most prevalent disease, affecting 80% of people worldwide. Resistance to antibiotics has been on the rise; over 40% of acne infections now resist commonly used topical and oral anti-acnes antibiotics, making treatment difficult. In our effort to refine blue light as an alternative safe clinically effective treatment, we determined if 100% bacterial suppression is attainable at ultralow irradiances and radiant energies, and explored the relationship between bacterial suppression and fluorescence during treatment. P. acnes were irradiated in vitro repeatedly three times per day at 3- or 4-hour intervals over three or more days, using 3 or 5â¯J/cm2 radiant energy of 450â¯nm pulsed blue light (PBL) at irradiances as low as 2â¯mW/cm2. In another series of experiments, we measured changes in P. acnes fluorescence as bacteria were repeatedly irradiated at various radiant exposures over three to four days. Our results showed that (1) 33% PBL, applied three times per day at 3-hour intervals each day over a three-day period at 2â¯mW/cm2 irradiance and 5â¯J/cm2 radiant exposure, resulted in100% bacterial suppression (7 log10 reduction), (2) the absorbed 450â¯nm light caused P. acnes to fluoresce predominantly in the red spectrum, with the fluorescence diminishing correlatively as treatment was repeated at 3-hour intervals and rising significantly during long periods of no treatment, and (3) treatment at 3-hour intervals gave better results than treatment at 4-hour intervals.
Assuntos
Luz , Propionibacterium acnes/efeitos da radiação , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Espectrometria de Fluorescência , TermodinâmicaRESUMO
Infection with Propionibacterium acnes is ubiquitous, and drug resistant strains have been on the rise as the use of pharmaceutical antimicrobials continues to engender the emergence of further resistant strains. In previous studies, we showed that treatment with blue light serves as an alternative to pharmaceutical intervention. As a part of our ongoing effort to improve the antimicrobial efficacy of blue light, we studied the effect of pulsed 450 nm light on P. acnes in vitro and compared two pulsed rates with continuous wave irradiation. We irradiated cultures of P. acnes at various irradiances and radiant energies either singly or repeatedly at various time intervals, using printed micro-LEDs, with the goal of finding the lowest combination of irradiance and radiant energy that would yield 100% bacterial suppression. Our results show that treatment with 33% pulsed light gave the best result compared to 20% pulsed wave or continuous wave. Timing irradiation to coincide with the replication cycle of P. acnes produced a significantly better antimicrobial effect. Furthermore, repeated irradiation at 3-h or 4-h interval enabled significant bacterial suppression even at lower irradiances; thus, making single irradiation at high irradiances unnecessary. Moreover, combining repeated irradiation with appropriate duration of treatment and 33% irradiation pulse rate gave optimal 100% [7 log10] bacterial suppression.
Assuntos
Luz , Propionibacterium acnes/efeitos da radiação , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Impressão Tridimensional , Termodinâmica , Fatores de TempoRESUMO
It is well documented that blue light absorption by bacterial chromophores triggers downstream production of reactive oxygen species (ROS), which in turn results in bacterial cell death. To elucidate the importance of chromophores in the bactericidal effect of blue light, and to determine whether blue light absorption per se or the presence of porphyrins known to engender ROS is crucial in blue light treatment, we studied the effect of 450 nm pulsed light on Streptococcus agalactiae, also known as Group B Streptococcus (GBS) strain COH1. GBS does not synthesize porphyrins but has a blue light-absorbing chromophore, granadaene. We irradiated planktonic cultures of GBS with or without exogenous chromophore supplementation using either protoporphyrin IX (PPIX), coproporphyrin III (CPIII), Nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), Flavin adenine dinucleotide (FAD), or Flavin mononucleotide (FMN). Quantification of surviving bacterial colonies, presented as percent survival and CFU/mL (log10), showed that (1) 450 nm blue light does not suppress the growth of GBS, even though its endogenous chromophore, granadaene, absorbs light in the 450 nm spectrum. (2) The addition of either of the two exogenous porphyrins, PPIX or CPIII, significantly suppressed GBS, indicating the importance of porphyrins in the antimicrobial action of blue light. (3) Adding exogenous FMN or FAD, two known absorbers of 450 nm light, minimally potentiated the bactericidal effect of blue light, again confirming that mere absorption of blue light by chromophores does not necessarily result in bacterial suppression. (4) Irradiation of GBS with or without NAD+ or NADH supplementation-two weak absorbers of 450 nm light-minimally suppressed GBS, indicating that a blue light-absorbing chromophore is essential for the bactericidal action of blue light. (5) Collectively, these findings show that in addition to the presence of a blue light-absorbing chromophore in bacteria, a chromophore with the right metabolic machinery and biochemical structure, capable of producing ROS, is necessary for 450 nm blue light to suppress GBS.
Assuntos
Luz , Porfirinas/química , Porfirinas/farmacologia , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/efeitos da radiação , Interações Medicamentosas , Flavina-Adenina Dinucleotídeo/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , NAD/farmacologia , Streptococcus agalactiae/fisiologiaRESUMO
Blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive antibiotic resistant bacterium that leads to fatal infections; however, the mechanism of bacterial death remains unclear. In this paper, to uncover the mechanism underlying the bactericidal effect of blue light, a combination of Fourier transform infrared (FTIR) spectroscopy and chemometric tools is employed to detect the photoreactivity of MRSA and its distinctive pathway toward apoptosis after treatment. The mechanism of action of UV light and vancomycin against MRSA is also investigated to support the findings. Principal component analysis followed by linear discriminant analysis (PCA- LDA) is employed to reveal clustering of five groups of MRSA samples, namely untreated (control I), untreated and incubated at ambient air (control II), irradiated with 470nm blue light, irradiated with 253.5 UV light, and vancomycin-treated MRSA. Loadings plot from PCA-LDA analysis reveals important functional groups in proteins (1683, 1656, 1596, 1542cm-1), lipids (1743, 1409cm-1), and nucleic acids region of the spectrum (1060, 1087cm-1) that are responsible for the classification of blue light irradiated spectra and control spectra. Cluster vector plots and scores plot reveals that UV light-irradiated spectra are the most biochemically similar to blue light- irradiated spectra; however, some wavenumbers experience a shift. The shifts between blue light and UV light irradiated loadings plot at νasym PO2- band (from 1228 to 1238cm-1), DNA backbone (from 970 to 966cm-1) and base pairing vibration of DNA (from 1717 to 1712cm-1) suggest distinctive changes in DNA conformation in response to irradiation. Our findings indicate that irradiation of MRSA with 470nm light induces A-DNA cleavage and that B-DNA is more resistant to damage by blue light. Blue light and UV light treatment of MRSA are complementary and distinct from the known antimicrobial effect of vancomycin. Moreover, it is known that UV-induced cleavage of DNA predominantly targets B-DNA, which is in agreement with the FTIR findings. Overall the results suggest that the combination of light and vancomycin could be a more robust approach in treating MRSA infections.