Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Biol Chem ; 404(4): 255-265, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36427206

RESUMO

The GluN2C subunit exists predominantly, but not exclusively in NMDA receptors within the cerebellum. Antagonists such as UBP1700 and positive allosteric modulators including PYD-106 and 3-acylamino-2-aminopropionic acid derivatives such as UA3-10 ((R)-2-amino-3-{[5-(2-bromophenyl)thiophen-2-yl]carboxamido}propionic acid) represent promising tool compounds to investigate the role of GluN2C-containing NMDA receptors in the signal transduction in the brain. However, due to its high polarity the bioavailability and CNS penetration of the amino acid UA3-10 are expected to be rather low. Herein, three ester prodrugs 12a-c of the NMDA receptor glycine site agonist UA3-10 were prepared and pharmacokinetically characterized. The esters 12a-c showed higher lipophilicity (higher logD 7.4 values) than the acid UA3-10 but almost the same binding at human serum albumin. The acid UA3-10 was rather stable upon incubation with mouse liver microsomes and NADPH, but the esters 12a-c were fast hydrolyzed to afford the acid UA3-10. Incubation with pig liver esterase and mouse serum led to rapid hydrolysis of the esters 12a-c. The isopropyl ester 12c showed a promising logD 7.4 value of 3.57 and the highest stability in the presence of pig liver esterase and mouse serum. These results demonstrate that ester prodrugs of UA3-10 can potentially afford improved bioavailability and CNS penetration.


Assuntos
Pró-Fármacos , Receptores de N-Metil-D-Aspartato , Camundongos , Humanos , Animais , Suínos , Receptores de N-Metil-D-Aspartato/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Ésteres , Sítios de Ligação , Esterases/metabolismo
2.
Chemistry ; 28(10): e202102998, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35076996

RESUMO

Anilines are key constituents in biologically active compounds and often obtained from transition metal-catalyzed coupling of an aryl halide with an amine. In this work, we report a transition metal-free method for the synthesis of meta-bromo- and meta-trifluoromethylanilines starting from 3-tribromomethylcyclopentanone or 3-(2-bromo-2-chloro-1,1,1-trifluoroethyl)cyclopentanone, respectively. The scope of the transformation is shown by application of primary, secondary and aromatic amines. The reaction proceeds in acceptable to high yields (20-81 %), and allows for the synthesis of anilines with substitution patterns otherwise difficult to access.


Assuntos
Aminas , Elementos de Transição , Compostos de Anilina , Ciclopentanos
3.
Chemistry ; 27(42): 10941-10947, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34041800

RESUMO

Disrotatory - thermally allowed - 2π-electrocyclic ring-opening reactions require high temperatures to proceed. Herein, we report the first anion-accelerated 2π-electrocyclic ring opening of 6,6-dihalobicyclo[3.1.0]hexan-2-ones at low temperature to give the corresponding meta-halophenols in good to high yields (18 examples, 29-92 % yield, average: 65 %). Many of the phenols have unconventional substitution patterns and are reported here for the first time. Furthermore, the strength of the methodology was shown by the total synthesis of the densely functionalized phenolic natural product caramboxin (isolated as the lactam dehydrate). The reaction mechanism underlying the anion-acceleration was investigated in an ab initio study, which concluded that base-mediated proton abstraction anti to the concurrently departing endo-bromine was the initiating step in an overall concerted reaction mechanism leading directly to the meta-halophenol.


Assuntos
Lactamas , Ânions
4.
Mol Pharmacol ; 88(2): 401-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26056160

RESUMO

In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human α1,2,3,5ß2,3γ2S GABAA receptors (GABAARs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the α4,6ß1,2,3δ GABAAR subtypes, ranging from inactivity (α4ß1δ), through negative (α6ß1δ) or positive allosteric modulation (α4ß2δ, α6ß2,3δ), to superagonism (α4ß3δ). Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABAAR. Instead, the compound is proposed to act through the transmembrane ß((+))/α((-)) subunit interface of the receptor, possibly targeting a site overlapping with that of the general anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABAAR modulator. The mode of action of methaqualone was further investigated in multichannel recordings from primary frontal cortex networks, where the overall activity changes induced by the compound at 1-100 µM concentrations were quite similar to those mediated by other CNS depressants. Finally, the free methaqualone concentrations in the mouse brain arising from doses producing significant in vivo effects in assays for locomotion and anticonvulsant activity correlated fairly well with its potencies as a modulator at the recombinant GABAARs. Hence, we propose that the multifaceted functional properties exhibited by methaqualone at GABAARs give rise to its effects as a therapeutic and recreational drug.


Assuntos
Encéfalo/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Metaqualona/farmacologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Animais , Sítios de Ligação , Humanos , Drogas Ilícitas , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Mutação , Receptores de GABA-A/química , Xenopus/genética
5.
BMC Cancer ; 15: 411, 2015 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-25981639

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a leading cause of cancer death globally and new biomarkers and treatments are severely needed. METHODS: Here, we employed HCT116 and LoVo human CRC cells made resistant to either SN38 or oxaliplatin, to investigate whether altered expression of the high affinity glutamate transporters Solute Carrier (SLC)-1A1 and -1A3 (EAAT3, EAAT1) is associated with the resistant phenotypes. Analyses included real-time quantitative PCR, immunoblotting and immunofluorescence analyses, radioactive tracer flux measurements, and biochemical analyses of cell viability and glutathione content. Results were evaluated using one- and two-way ANOVA and Students two-tailed t-test, as relevant. RESULTS: In SN38-resistant HCT116 and LoVo cells, SLC1A1 expression was down-regulated ~60 % and up-regulated ~4-fold, respectively, at both mRNA and protein level, whereas SLC1A3 protein was undetectable. The changes in SLC1A1 expression were accompanied by parallel changes in DL-Threo-ß-Benzyloxyaspartic acid (TBOA)-sensitive, UCPH101-insensitive [(3)H]-D-Aspartate uptake, consistent with increased activity of SLC1A1 (or other family members), yet not of SLC1A3. DL-TBOA co-treatment concentration-dependently augmented loss of cell viability induced by SN38, while strongly counteracting that induced by oxaliplatin, in both HCT116 and LoVo cells. This reflected neither altered expression of the oxaliplatin transporter Cu(2+)-transporter-1 (CTR1), nor changes in cellular reduced glutathione (GSH), although HCT116 cell resistance per se correlated with increased cellular GSH. DL-TBOA did not significantly alter cellular levels of p21, cleaved PARP-1, or phospho-Retinoblastoma protein, yet altered SLC1A1 subcellular localization, and reduced chemotherapy-induced p53 induction. CONCLUSIONS: SLC1A1 expression and glutamate transporter activity are altered in SN38-resistant CRC cells. Importantly, the non-selective glutamate transporter inhibitor DL-TBOA reduces chemotherapy-induced p53 induction and augments CRC cell death induced by SN38, while attenuating that induced by oxaliplatin. These findings may point to novel treatment options in treatment-resistant CRC.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Antineoplásicos/farmacologia , Ácido Aspártico/farmacologia , Camptotecina/análogos & derivados , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Compostos Organoplatínicos/farmacologia , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Camptotecina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Cobre/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Células HCT116 , Humanos , Irinotecano , Oxaliplatina , Transporte Proteico , Proteína Supressora de Tumor p53/metabolismo
6.
Neurochem Res ; 40(3): 542-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25488153

RESUMO

The glutamatergic neurotransmitter system is involved in important neurophysiological processes and thus constitutes a promising target for the treatment of neurological diseases. The two ionotropic glutamate receptor agonists kainic acid (KA) and dihydrokainic acid (DHK) have been used as research tools in various in vivo central nervous system disease models in rodents, as well as being templates in the design of novel ligands affecting the glutamatergic system. Both molecules are highly polar but yet capable of crossing the blood-brain barrier (BBB). We used an in situ rat brain perfusion technique to determine the brain uptake mechanism and permeability across the BBB. To determine KA and DHK concentrations in the rat brain, simple and rapid sample preparation and liquid chromatography mass spectrometer methods were developed. According to our results the BBB permeability of KA and DHK is low, 0.25 × 10(-6) and 0.28 × 10(-6) cm/s for KA and DHK, respectively. In addition, the brain uptake is mediated by passive diffusion, and not by active transport. Furthermore, the non-specific plasma and brain protein binding of KA and DHK was determined to be low, which means that the unbound drug volume of distribution in brain is also low. Therefore, even though the total KA and DHK concentrations in the brain are low after systemic dosing, the concentrations in the vicinity of the glutamate receptors are sufficient for their activation and thus the observed efficacy.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Permeabilidade Capilar/fisiologia , Ácido Caínico/análogos & derivados , Ácido Caínico/metabolismo , Animais , Transporte de Íons/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
7.
J Neurosci ; 33(3): 1068-87, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325245

RESUMO

In the present study, the mechanism of action and molecular basis for the activity of the first class of selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rodent ortholog GLAST are elucidated. The previously reported specificity of UCPH-101 and UCPH-102 for EAAT1 over EAAT2 and EAAT3 is demonstrated to extend to the EAAT4 and EAAT5 subtypes as well. Interestingly, brief exposure to UCPH-101 induces a long-lasting inactive state of EAAT1, whereas the inhibition exerted by closely related analogs is substantially more reversible in nature. In agreement with this, the kinetic properties of UCPH-101 unblocking of the transporter are considerably slower than those of UCPH-102. UCPH-101 exhibits noncompetitive inhibition of EAAT1, and its binding site in GLAST has been delineated in an elaborate mutagenesis study. Substitutions of several residues in TM3, TM4c, and TM7a of GLAST have detrimental effects on the inhibitory potency and/or efficacy of UCPH-101 while not affecting the pharmacological properties of (S)-glutamate or the competitive EAAT inhibitor TBOA significantly. Hence, UCPH-101 is proposed to target a predominantly hydrophobic crevice in the "trimerization domain" of the GLAST monomer, and the inhibitor is demonstrated to inhibit the uptake through the monomer that it binds to exclusively and not to affect substrate translocation through the other monomers in the GLAST trimer. The allosteric mode of UCPH-101 inhibition underlines the functional importance of the trimerization domain of the EAAT and demonstrates the feasibility of modulating transporter function through ligand binding to regions distant from its "transport domain."


Assuntos
Regulação Alostérica/efeitos dos fármacos , Benzopiranos/farmacologia , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Animais , Transporte Biológico/fisiologia , Células Cultivadas , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/metabolismo , Humanos , Ratos
8.
Neurochem Res ; 39(10): 1964-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24682739

RESUMO

Uptake of the major excitatory neurotransmitter in the CNS, (S)-glutamate, is mediated by a family of excitatory amino acid transporters (EAAT). Previously we have explored the structure-activity relationship (SAR) of a series of EAAT1 selective inhibitors, leading to the development of the potent inhibitors UCPH-101 and UCPH-102. In the present study, we set out to improve the solubility properties of these EAAT1 inhibitors with the objective to develop analogs more suited as pharmacological tools for in vivo studies of EAAT1 in terms of their bioavailability. A total of 23 novel UCPH-101/102 analogs were designed, synthesized and characterized pharmacologically at EAAT1-3 in a [(3)H]-D-aspartate uptake assay. Most notably, the potent EAAT1 inhibition displayed of UCPH-101 and UCPH-102 was retained in analog 1d in which the napht-1-yl group in the 7-position of UCPH-102 has been replaced by an o-biphenyl moiety. In contrast, EAAT1 activity was dramatically compromised in analogs 1e and 1f comprising m- and p-biphenyl groups as 7-substituents, respectively. Analog 1d displayed low bioavailability after oral administration in rats, and this problem was addressed by the synthesis of a series of analogs with different chloro, fluoro, methoxy, triflouromethyl and carboxy substitution patterns at the o-biphenyl group of 1d (1h-1s) and m- and p-pyridine analogs of 1d (1t and 1v). Unfortunately, all of the modifications resulted in substantial decreased EAAT1 inhibitory activity, which supports the notion of a very lipophilic binding pocket in EAAT1 for the aromatic 7-substituent in these ligands. In conclusion, while we have not succeeded in developing UCPH-101/102 analogs possessing improved bioavailability properties, this study does offer interesting SAR information about this inhibitor class, and analog 1d seems to be an interesting lead for future SAR studies with focus on the development of more potent EAAT1 inhibitors.


Assuntos
Benzopiranos/farmacologia , Compostos de Bifenilo/farmacologia , Cumarínicos/farmacologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/antagonistas & inibidores , Benzopiranos/química , Benzopiranos/farmacocinética , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cumarínicos/química , Cumarínicos/farmacocinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
9.
Org Biomol Chem ; 12(43): 8689-95, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25253656

RESUMO

The membrane bound enzyme monoamine oxidase exist in two splice variants designated A and B (MAO-A and MAO-B) and are key players in the oxidative metabolism of monoamines in mammalians. Despite their importance and being a prevalent target for the development of inhibitors as drugs, no systematic study of substrate specificity has been reported. In this study we present a systematic study of the MAO-A and MAO-B substrate specificity profile by probing two series of phenethylamine analogs. Km and kcat values were determined for four N-alkyl analogs 2-5 and four aryl halide analogs 6-9 at MAO-A and MAO-B. A following in silico study disclosed a new adjacent compartment to the MAO-B substrate pocket defined by amino acids Tyr188, Tyr435, Tyr398, Thr399, Cys172 and Gly434. This new insight is important for the understanding of the substrate specificity of the MAO-B enzyme and will be relevant for future drug design within the field of monoamines.


Assuntos
Inibidores da Monoaminoxidase/química , Monoaminoxidase/química , Fenetilaminas/química , Humanos , Cinética , Cinuramina/química , Modelos Moleculares , Inibidores da Monoaminoxidase/síntese química , Fenetilaminas/síntese química , Proteínas Recombinantes/química , Soluções , Relação Estrutura-Atividade , Especificidade por Substrato
10.
J Med Chem ; 67(2): 1314-1326, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170918

RESUMO

Metabotropic glutamate (Glu) receptors (mGlu receptors) play a key role in modulating excitatory neurotransmission in the central nervous system (CNS). In this study, we report the structure-based design and pharmacological evaluation of densely functionalized, conformationally restricted glutamate analogue (1S,2S,3S)-2-((S)-amino(carboxy)methyl)-3-(carboxymethyl)cyclopropane-1-carboxylic acid (LBG30300). LBG30300 was synthesized in a stereocontrolled fashion in nine steps from a commercially available optically active epoxide. Functional characterization of all eight mGlu receptor subtypes showed that LBG30300 is a picomolar agonist at mGlu2 with excellent selectivity over mGlu3 and the other six mGlu receptor subtypes. Bioavailability studies on mice (IV administration) confirm CNS exposure, and an in silico study predicts a binding mode of LBG30300 which induces a flipping of Tyr144 to allow for a salt bridge interaction of the acetate group with Arg271. The Tyr144 residue now prevents Arg271 from interacting with Asp146, which is a residue of differentiation between mGlu2 and mGlu3 and thus could explain the observed subtype selectivity.


Assuntos
Sistema Nervoso Central , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Sistema Nervoso Central/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Ciclopropanos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Glutamatos , Ácidos Carboxílicos
11.
Eur J Med Chem ; 266: 116157, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38245976

RESUMO

The metabotropic glutamate (Glu) receptors (mGluRs) are G-protein coupled receptors, which play a central role in modulating excitatory neurotransmission in the central nervous system (CNS). Thus, the development of tool compounds thereto, continues to interest the scientific community. In this study, we report the design and synthesis of new conformationally restricted 2-aminoadipic acid (2AA) 2-4, and glutamic acid 5, 6 analogs, which share the cyclopropane ring as the restrictor. The analogs were characterized at rat mGlu1-8 in an IP-One functional assay. While the 2AA analogs 3a, 4a and CCG-I analog 5a were shown to be selective mGlu2 agonists with low micromolar potencies, CCG-II analog 5b was shown to be a potent full agonist at mGlu2 (EC50 = 82 nM) with ∼15-fold selectivity over mGlu3, >25-fold selectivity over group III, and >60-fold selectivity over group I subtypes. An in silico study was performed to address this significant change (>3500 fold) in potency upon introduction of this methyl group (L-CCG-II vs 5b).


Assuntos
Aminoácidos , Receptores de Glutamato Metabotrópico , Ratos , Animais , Aminoácidos/farmacologia , Glicina , Receptores de Glutamato Metabotrópico/agonistas , Ácido Glutâmico/farmacologia , Sistema Nervoso Central
12.
J Struct Biol ; 180(1): 39-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22789682

RESUMO

Conformationally restricted glutamate analogues have been pharmacologically characterized at AMPA and kainate receptors and the crystal structures have been solved of the ligand (2S,1'R,2'S)-2-(2'-carboxycyclobutyl)glycine (CBG-IV) in complex with the ligand binding domains of the AMPA receptor GluA2 and the kainate receptor GluK3. These structures show that CBG-IV interacts with the binding pocket in the same way as (S)-glutamate. The binding affinities reveal that CBG-IV has high affinity at the AMPA and kainate receptor subtypes. Appreciable binding affinity of CBG-IV was not observed at NMDA receptors, where the introduction of the carbocyclic ring is expected to lead to a steric clash with binding site residues. CBG-IV was demonstrated to be an agonist at both GluA2 and the kainate receptor GluK1. CBG-IV showed high affinity binding to GluK1 compared to GluA2, GluK2 and GluK3, which exhibited lower affinity for CBG-IV. The structure of GluA2 LBD and GluK3 LBD in complex with CBG-IV revealed similar binding site interactions to those of (S)-glutamate. No major conformational rearrangements compared to the (S)-glutamate bound conformation were found in GluK3 in order to accommodate CBG-IV, in contrast with GluA2 where a shift in lobe D2 binding site residues occurs, leading to an increased binding cavity volume compared to the (S)-glutamate bound structure.


Assuntos
Ciclobutanos/química , Glutamatos/química , Glicina/análogos & derivados , Receptores de AMPA/química , Receptores de Ácido Caínico/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Glicina/química , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Ratos , Receptores de AMPA/agonistas , Receptores de Ácido Caínico/agonistas , Estereoisomerismo , Receptor de GluK3 Cainato
13.
Bioorg Med Chem ; 20(23): 6831-9, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23072958

RESUMO

The excitatory amino acid transporters (EAATs) play a pivotal role in regulating the synaptic concentration of glutamate in the mammalian central nervous system. To date, five different subtypes have been identified, named EAAT15 in humans (and GLAST, GLT-1, EAAC1, EAAT4, and EAAT5, respectively, in rodents). Recently, we have published and presented a structure-activity relationship (SAR) study of a novel class of selective inhibitors of EAAT1 (and GLAST), with the analogs UCPH-101 (IC(50)=0.66µM) and UCPH-102 (IC(50)=0.43µM) being the most potent inhibitors in the series. In this paper, we present the design, synthesis and pharmacological evaluation of six coumarin-based fluorescent analogs of UCPH-101/102 as subtype-selective inhibitors at EAAT1. Analogs 1114 failed to inhibit EAAT1 function (IC(50) values >300µM), whereas analogs 15 and UCPH-102F inhibited EAAT1 with IC(50) values in the medium micromolar range (17µM and 14µM, respectively). Under physiological pH no fluorescence was observed for analog 15, while a bright blue fluorescence emission was observed for analog UCPH-102F. Regrettably, under confocal laser scanning microscopy selective visualization of expression of EAAT1 over EAAT3 was not possible due to nonspecific binding of UCPH-102F.


Assuntos
Benzopiranos/química , Benzopiranos/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Benzopiranos/síntese química , Cumarínicos/síntese química , Desenho de Fármacos , Transportador 1 de Aminoácido Excitatório/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Células HEK293 , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade
14.
Front Chem ; 10: 1008233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465862

RESUMO

N-Methyl-d-aspartate (NMDA) receptors play critical roles in central nervous system function and are involved in variety of brain disorders. We previously developed a series of (R)-3-(5-furanyl)carboxamido-2-aminopropanoic acid glycine site agonists with pronounced variation in activity among NMDA receptor GluN1/2A-D subtypes. Here, a series of (R)-2-amino-3-triazolpropanoic acid analogues with a novel chemical scaffold is designed and their pharmacological properties are evaluated at NMDA receptor subtypes. We found that the triazole can function as a bioisostere for amide to produce glycine site agonists with variation in activity among NMDA receptor subtypes. Compounds 13g and 13i are full and partial agonists, respectively, at GluN1/2C and GluN1/2D with 3- to 7-fold preference in agonist potency for GluN1/2C-D over GluN1/2A-B subtypes. The agonist binding mode of these triazole analogues and the mechanisms by which the triazole ring can serve as a bioisostere for amide were further explored using molecular dynamics simulations. Thus, the novel (R)-2-amino-3-triazolpropanoic acid derivatives reveal insights to agonist binding at the GluN1 subunit of NMDA receptors and provide new opportunities for the design of glycine site agonists.

15.
J Med Chem ; 65(1): 734-746, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34918931

RESUMO

NMDA receptors mediate glutamatergic neurotransmission and are therapeutic targets due to their involvement in a variety of psychiatric and neurological disorders. Here, we describe the design and synthesis of a series of (R)-3-(5-furanyl)carboxamido-2-aminopropanoic acid analogues 8a-s as agonists at the glycine (Gly) binding site in the GluN1 subunit, but not GluN3 subunits, of NMDA receptors. These novel analogues display highly variable potencies and agonist efficacies among the NMDA receptor subtypes (GluN1/2A-D) in a manner dependent on the GluN2 subunit. Notably, compound 8p is identified as a potent partial agonist at GluN1/2C (EC50 = 0.074 µM) with an agonist efficacy of 28% relative to activation by Gly and virtually no agonist activity at GluN1/2A, GluN1/2B, and GluN1/2D. Thus, these novel agonists can modulate the activity of specific NMDA receptor subtypes by replacing the full endogenous agonists Gly or d-serine (d-Ser), thereby providing new opportunities in the development of novel therapeutic agents.


Assuntos
Proteínas de Transporte/agonistas , Agonistas de Aminoácidos Excitatórios/síntese química , Agonistas de Aminoácidos Excitatórios/farmacologia , Glicina/efeitos dos fármacos , Proteínas de Membrana/agonistas , Proteínas do Tecido Nervoso/agonistas , Receptores de N-Metil-D-Aspartato/agonistas , Animais , Humanos , Modelos Moleculares , Relação Estrutura-Atividade , Xenopus , Xenopus laevis
16.
ACS Chem Neurosci ; 13(10): 1580-1587, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35475632

RESUMO

The development of tool compounds for the ionotropic glutamate receptors (iGluRs) remains an important research objective, as these are essential for the study and understanding of the roles of these receptors in health and disease. Herein, we report on the pharmacological characterization of (S)-2-hydroxyhistidine (2a) and (S)-2-mercaptohistidine (2b) as mediators of glutamatergic neurotransmission. While 2a displayed negligible binding affinity or activity at all glutamate receptors and transporters investigated, 2b displayed selectivity for homomeric GluK3 with binding affinities in the low micromolar range (Ki = 6.42 ± 0.74 µM). The iGluR subtype selectivity ratio for 2b was calculated at ∼30-fold for GluK1/GluK3, GluA3/GluK3, and GluA4/GluK3 and >100-fold for GluK2/GluK3, GluA1/GluK3, and GluA2/GluK3. Unexpectedly, functional characterization of 2b revealed that the compound is an antagonist (Kb = 7.6 µM) at homomeric GluK3 receptors while exhibiting only weak agonist activity at GluA2 (EC50 = 3.25 ± 0.55 mM). The functional properties of 2b were explored further in electrophysiological recordings of mouse hippocampal neurons.


Assuntos
Receptores de Ácido Caínico , Transmissão Sináptica , Animais , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Receptores de Ácido Caínico/metabolismo
17.
J Struct Biol ; 176(3): 307-14, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21907808

RESUMO

Ionotropic glutamate receptors (iGluRs) are involved in excitatory signal transmission throughout the central nervous system and their malfunction is associated with various health disorders. GluK3 is a subunit of iGluRs, belonging to the subfamily of kainate receptors (GluK1-5). Several crystal structures of GluK1 and GluK2 ligand binding domains have been determined in complex with agonists and antagonists. However, little is known about the molecular mechanisms underlying GluK3 ligand binding properties and no compounds displaying reasonable selectivity towards GluK3 are available today. Here, we present the first X-ray crystal structure of the ligand binding domain of GluK3 in complex with glutamate, determined to 1.6Å resolution. The structure reveals a conserved glutamate binding mode, characteristic for iGluRs, and a water molecule network in the glutamate binding site similar to that seen in GluK1. In GluK3, a slightly lower degree of domain closure around glutamate is observed compared to most other kainate receptor structures with glutamate. The volume of the GluK3 glutamate binding cavity was found to be of intermediate size between those of GluK1 and GluK2. The residues in GluK3 contributing to the subfamily differences in the binding sites are primarily: Thr520, Ala691, Asn722, Leu736 and Thr742. The GluK3 ligand binding domain seems to be less stabilized through interlobe interactions than GluK1 and this may contribute to the faster desensitization kinetics of GluK3.


Assuntos
Ácido Glutâmico/química , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Bases de Dados de Proteínas , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Ratos , Receptor de GluK3 Cainato
18.
ACS Med Chem Lett ; 11(11): 2212-2220, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33214831

RESUMO

The excitatory amino acid transporters (EAATs) mediate uptake of the major excitatory neurotransmitter l-glutamate (Glu). The essential functions governed by these transporters in regulating the central Glu level make them interesting therapeutic targets in a wide range of neurodegenerative and psychiatric disorders. l-Aspartate (Asp), another EAAT substrate, has served as a privileged scaffold for the development of EAAT inhibitors. In this study, we designed and synthesized the first ß-indolyloxy Asp analogs 15a-d with the aim to probe a hitherto unexplored adjacent pocket to the substrate binding site. The pharmacological properties of 15a-d were characterized at hEAAT1-3 and rEAAT4 in a conventional [3H]-d-Asp uptake assay. Notably, thiophene analog 15b and the para-trifluoromethyl phenyl analog 15d were found to be hEAAT1,2-preferring inhibitors exhibiting IC50 values in the high nanomolar range (0.21-0.71 µM) at these two transporters versus IC50 values in the low micromolar range at EAAT3,4 (1.6-8.9 µM). In summary, the results presented herein open up for further structure-activity relationship studies of this new scaffold.

19.
ACS Chem Neurosci ; 11(24): 4362-4375, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33170625

RESUMO

Methaqualone (2-methyl-3-(o-tolyl)-quinazolin-4(3H)-one, MTQ) is a moderately potent positive allosteric modulator (PAM) of GABAA receptors (GABAARs). In a previous structure-activity relationship (SAR) study probing the importance of 2- and 3-substituents in the quinazolin-4(3H)-one scaffold, several potent GABAAR PAMs were identified, including 2,3-diphenylquinazolin-4(3H)-one (PPQ) and 3-(2-chlorophenyl)-2-phenylquinazolin-4(3H)-one (Cl-PPQ). Here, PPQ was applied as lead in a SAR study of 6-, 7-, and 8-substituents in the quinazolin-4(3H)-one by synthesis and functional characterization of 36 PPQ analogs at various GABAAR subtypes. While none of the new analogs were significantly more potent than PPQ or displayed pronounced subtype selectivity across the GABAARs tested, several interesting SAR observations were extracted from the study. In an in silico study, the putative binding modes of MTQ, PPQ, and Cl-PPQ in the transmembrane ß2(+)/α1(-) interface of the α1ß2γ2S GABAAR were predicted. Several plausible binding modes were identified for the three PAMs, and rationalization of the molecular basis for their different modulatory potencies was attempted.


Assuntos
Metaqualona , Receptores de GABA-A , Regulação Alostérica , Compostos de Bifenilo , Simulação por Computador , Receptores de GABA-A/metabolismo , Relação Estrutura-Atividade , Ácido gama-Aminobutírico
20.
J Med Chem ; 63(17): 9928-9949, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32815361

RESUMO

We report the synthesis of the first series of heterobivalent ligands targeting the putative heteromeric 5-HT2A/mGlu2 receptor complex, based on the 5-HT2A antagonist MDL-100,907 and the mGlu2 ago-PAM JNJ-42491293. The functional properties of monovalent and heterobivalent ligands were characterized in 5-HT2A-, mGlu2/Gqo5-, 5-HT2A/mGlu2-, and 5-HT2A/mGlu2/Gqo5-expressing HEK293 cells using a Ca2+ imaging assay and a [3H]ketanserin binding assay. Pronounced functional crosstalk was observed between the two receptors in 5-HT2A/mGlu2 and 5-HT2A/mGlu2/Gqo5 cells. While the synthesized monovalent ligands retained the 5-HT2A antagonist and mGlu2 ago-PAM functionalities, the seven bivalent ligands inhibited 5-HT-induced responses in 5-HT2A/mGlu2 cells and both 5-HT- and Glu-induced responses in 5-HT2A/mGlu2/Gqo5 cells. However, no definitive correlation between the functional potency and spacer length of the ligands was observed, an observation substantiated by the binding affinities exhibited by the compounds in 5-HT2A, 5-HT2A/mGlu2, and 5-HT2A/mGlu2/Gqo5 cells. In conclusion, while functional crosstalk between 5-HT2A and mGlu2 was demonstrated, it remains unclear how these heterobivalent ligands interact with the putative receptor complex.


Assuntos
Piperidinas/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Triazóis/farmacologia , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/síntese química , Antagonistas do Receptor 5-HT2 de Serotonina/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA