Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fire Saf J ; 1402023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37719796

RESUMO

Light Detection and Ranging (LiDAR) is a powerful tool to characterize and track the surface geometry of solid objects. In a fire, however, no method has excelled at measuring three-dimensional shapes at millimeter precision while offering some immunity to the effects of flames. This paper applies coherent Frequency Modulated Continuous Wave Light Detection and Ranging to capture three-dimensional measurements of objects in fire at meters of stand-off distance. We demonstrate that despite the presence of natural gas flame depths up to 1.5 m obscuring the target, measurements with millimeter precision can be obtained. This is a significant improvement over previous work making the technique useful for many fire research applications. An approach to achieve sub-millimeter precision using spatial and temporal averaging during post-processing is presented. The technology is demonstrated in case studies of structural connection and vegetation response in fires.

2.
Sensors (Basel) ; 20(19)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993141

RESUMO

Detailed information about temperature distribution can be important to understand structural behavior in fire. This study develops a method to image three-dimensional temperature distributions in steel-concrete composite slabs using distributed fiber optic sensors. The feasibility of the method is explored using six 1.2 m × 0.9 m steel-concrete composite slabs instrumented with distributed sensors and thermocouples subjected to fire for over 3 h. Dense point clouds of temperature in the slabs were measured using the distributed sensors. The results show that the distributed sensors operated at material temperatures up to 960 °C with acceptable accuracy for many structural fire applications. The measured non-uniform temperature distributions indicate a spatially distributed thermal response in steel-concrete composite slabs, which can only be adequately captured using approaches that provide a high density of through-depth data points.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33041476

RESUMO

This paper examines the structural response of cold-formed steel-framed building lateral force-resisting systems under combinations of simulated earthquake and fire loading. Full-scale experiments with gypsum-sheet steel composite panel sheathed walls, oriented strand board sheathed walls, and steel strap braced walls are presented. Twenty-two test specimens are subjected sequentially to combinations of cyclic shear deformation and fires of varying intensity; some approximate temperatures in standard furnace tests, and most have characteristics of actual building fires. In select tests, the walls are predamaged to simulate fire following an earthquake. The results show a progressive decrease of postfire lateral load capacity with increasing fire intensity for all walls; however, each wall type exhibits varied sensitivity to the fire intensity as well as to predamage. By understanding the response of these structural systems in real fires, designers can better plan for situations in which multiple hazards, including fire, exist.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33041477

RESUMO

This paper presents the results of compartment fire experiments on four 12.8 m long composite floor beams with various end support conditions. Specimens were constructed as partially-composite beams, consisting of W18×35 steel beams and 83 mm thick lightweight concrete slabs cast on top of 76 mm deep ribbed steel deck units. Test variables included two types of simple shear connections (shear-tab and welded-bolted double-angle connections) and the presence or absence of slab continuity over the girders. Each specimen was subjected to gravity loading using hydraulic actuators and 4000 kW compartment fires produced using natural gas-fueled burners. This study evaluated the characteristics of the fire loading and thermal and structural responses of the specimens. The test results indicated that there were significant effects of thermal restraints on the behavior and failure modes of the specimens with simple shear connections. The specimens resisted gravity loads at large vertical displacements near midspan (approximately a ratio of span length over 20) without collapse under fire loading. However, various limit states and vulnerabilities to fires were observed, including local buckling of steel beams near supports, flexural failure (yielding of steel beams and concrete fracture near restrained end supports), and connection failure (weld shear or bolt shear) during heating and cooling which could lead to partial or total collapse of the floor system.

5.
J Struct Eng (N Y N Y) ; 143(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28239230

RESUMO

This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.

6.
J Air Waste Manag Assoc ; 65(7): 863-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26079560

RESUMO

UNLABELLED: A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. IMPLICATIONS: Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.


Assuntos
Poluentes Atmosféricos/química , Dióxido de Carbono/química , Monitoramento Ambiental/métodos , Gás Natural/análise , Efeito Estufa
7.
J Air Waste Manag Assoc ; 64(6): 679-89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25039202

RESUMO

UNLABELLED: Point velocity measurements conducted by traversing a Pitot tube across the cross section of a flow conduit continue to be the standard practice for evaluating the accuracy of continuous flow-monitoring devices. Such velocity traverses were conducted in the exhaust duct of a reduced-scale analog of a stationary source, and mean flow velocity was computed using several common integration techniques. Sources of random and systematic measurement uncertainty were identified and applied in the uncertainty analysis. When applicable, the minimum requirements of the standard test methods were used to estimate measurement uncertainty due to random sources. Estimates of the systematic measurement uncertainty due to discretized measurements of the asymmetric flow field were determined by simulating point velocity traverse measurements in a flow distribution generated using computational fluid dynamics. For the evaluated flow system, estimates of relative expanded uncertainty for the mean flow velocity ranged from +/- 1.4% to +/- 9.3% and depended on the number of measurement locations and the method of integration. IMPLICATIONS: Accurate flow measurements in smokestacks are critical for quantifying the levels of greenhouse gas emissions from fossil-fuel-burning power plants, the largest emitters of carbon dioxide. A systematic uncertainty analysis is necessary to evaluate the accuracy of these measurements. This study demonstrates such an analysis and its application to identify specific measurement components and procedures needing focused attention to improve the accuracy of mean flow velocity measurements in smokestacks.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Combustíveis Fósseis , Gases/análise , Centrais Elétricas , Fumaça/análise , Efeito Estufa , Incerteza , Estados Unidos
8.
Fire Technol ; 57(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-36733475

RESUMO

The accuracy of the exhaust flow measurement contributes significantly to the uncertainty of calorimetry measurements for large fire testing. Less than ideal flow characteristics such as skewed velocity distributions are typical of these large-scale flows and make it difficult to achieve the desired measurement accuracy. Consensus standards for fire testing recommend either bi-directional probes or orifice plates to determine exhaust flow. Both have limited accuracy in the presence of less than ideal flow conditions. Averaging pitot probes are an off-the-shelf technology widely used to monitor flows for industrial processes. They have been utilized in a system of large fire calorimeters to demonstrate differences of less than 5% between heat release rate measurements by oxygen consumption calorimetry and the theoretical heat output from a gas burner. Differences exceeded 5% for a small set of conditions but were still less than 10%. Both levels of agreement are within the confirmation requirements of the consensus standards and were achieved without a system calibration as recommended by the standards. Including this technology as an alternate method to measure exhaust flow would be an improvement to relevant fire testing standards and to the overall accuracy of calorimetry measurements for large fire testing.

9.
Fire Mater ; 46(1)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35002025

RESUMO

The effectiveness and the failure mechanism of fire barriers in residential upholstered furniture were investigated by full-scale flaming tests on upholstered chair mock-ups. Six commercial fire barriers were tested in this study. Fire barriers were screened for (1) the presence of elements that are typically used in fire retardants and, (2) the presence of targeted fire retardants. For each fire barrier, triplicate flammability tests were run on chair mock-ups where polyurethane foam and polyester fiber fill were used as the padding materials, and each chair component was fully wrapped with the fire barrier of choice and a polypropylene cover fabric. The ignition source was an 18 kW square propane burner, impinging on the top surface of the seat cushion for 80 s. Results showed all six fire barriers reduced the peak heat release rate (as much as ≈ 64 %) and delayed its occurrence (up to ≈ 19 min) as compared to the control chair mock-ups. The heat release rate remained at a relatively low plateau level until liquid products (generated by either melting or pyrolysis of the padding material) percolated through the fire barrier at the bottom of the seat cushion and ignited, while the fire barrier was presumably intact. The flaming liquid products dripped and quickly formed a pool fire under the chair and the peak heat release rate occurred shortly thereafter. Ultimately, the ignition of the percolating liquid products at the bottom of the seat cushion was identified as the mechanism triggering the failure of the fire barrier.

10.
Fire Mater ; Spec Issue2019.
Artigo em Inglês | MEDLINE | ID: mdl-32165780

RESUMO

This paper presents results of large-scale experiments with varying levels of fire severity on lateral force-resisting systems commonly used in cold-formed steel framed buildings. Gypsum-sheet steel composite panel sheathed walls, oriented strand board sheathed walls, and steel strap-braced walls are examined. Postflashover fire conditions of two different intensities as well as 1 hour of fire exposure similar to that in a standard furnace qualification test are studied. Additionally, a full-scale furnished kitchen fire experiment is conducted for comparison. The results highlight differences in the thermal response and subsequent performance of the walls as well as differing sensitives of the walls to pre-damage, eg, that might occur during an earthquake. The results are part of a larger effort to provide fragilities for these wall systems in response to realistic fires for performance-based design.

11.
Smart Mater Struct ; 26(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29230083

RESUMO

In this study, distributed fiber optic sensors based on pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA) are characterized and deployed to measure spatially-distributed temperatures in reinforced concrete specimens exposed to fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9 %. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA