Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 25(Pt 4): 935-943, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979153

RESUMO

Round robin studies have been used across fields of science for quality control testing and to investigate laboratory dependencies and cross-platform inconsistencies as well as to drive forward the improvement of understanding of experimental systems, systematic effects and theoretical limitations. Here, following the Q2XAFS Workshop and Satellite to IUCr Congress 2017 on `Data Acquisition, Treatment, Storage - quality assurance in XAFS spectroscopy', a mechanism is suggested for a suitable study across XAFS (X-ray absorption fine-structure) beamlines and facilities, to enable each beamline to cross-calibrate, provide representative test data, and to enable collaborative cross-facility activities to be more productive.

2.
J Synchrotron Radiat ; 25(Pt 4): 972-980, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979158

RESUMO

Following the Q2XAFS Workshop and Satellite to IUCr Congress 2017 on `Data Acquisition, Treatment, Storage - quality assurance in XAFS spectroscopy', a summary is given of the discussion on different aspects of a XAFS experiment that affect data quality. Some pertinent problems ranging from sources and minimization of noise to harmonic contamination and uncompensated monochromator glitches were addressed. Also, an overview is given of the major limitations and pitfalls of a selection of related methods, such as photon-out spectroscopies and energy-dispersive XAFS, and of increasingly common applications, namely studies at high pressure, and time-resolved investigations of catalysts in operando. Advice on how to avoid or deal with these problems and a few good practice recommendations are reported, including how to correctly report results.

3.
Nano Lett ; 17(6): 3902-3906, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28510441

RESUMO

We report for the first time the synthesis of large, free-standing, Mo2O2(µ-S)2(Et2dtc)2 (MoDTC) nanosheets (NSs), which exhibit an electron-beam induced crystalline-to-amorphous phase transition. Both electron beam ionization and femtosecond (fs) optical excitation induce the phase transition, which is size-, morphology-, and composition-preserving. Resulting NSs are the largest, free-standing regularly shaped two-dimensional amorphous nanostructures made to date. More importantly, amorphization is accompanied by dramatic changes to the NS electrical and optical response wherein resulting amorphous species exhibit room-temperature conductivities 5 orders of magnitude larger than those of their crystalline counterparts. This enhancement likely stems from the amorphization-induced formation of sulfur vacancy-related defects and is supported by temperature-dependent transport measurements, which reveal efficient variable range hopping. MoDTC NSs represent one instance of a broader class of transition metal carbamates likely having applications because of their intriguing electrical properties as well as demonstrated ability to toggle metal oxidation states.

4.
Inorg Chem ; 53(19): 10203-16, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25247396

RESUMO

Group 6 complexes M(ONO)2 (M = Cr, Mo, W; ONO = bis(2-oxy-3,5-di-tert-butylphenyl)amide) are prepared by the reaction of divalent metal halide precursors with Pb(ONO(Q))2. Analogous complexes containing the 2,4,6,8-tetra-tert-butyl-1,9-dioxophenoxazinate ligand (DOPO) are prepared by protonolysis of chromocene with H(DOPO(Q)) or by reaction of Pb(DOPO(Q))2 with M2Br4(CO)8 (M = Mo, W). The molybdenum and tungsten complexes are symmetrical, octahedral compounds for which spectroscopic data are consistent with M(VI) complexes with fully reduced [L(Cat)](3-) ligands. Quantitative analysis of the intraligand bond lengths, by comparison with literature standards, allows calculation of metrical oxidation states (MOS) for the ONO ligands. The MOS values of the tungsten and molybdenum complexes indicate that π donation from the ligand is weak and that differences between the ONO and DOPO ligands are small. In both the solid state and in solution, Cr(DOPO)2 is paramagnetic with localized quinone and semiquinone ligands bound to Cr(III). The geometry and electronic structure of Cr(ONO)2 differ in the solid state and in solution, as determined by crystallography, magnetic measurements, and Cr K-edge X-ray absorption spectroscopy. In solution, the structure resembles that of the DOPO analogue. In contrast, solid Cr(ONO)2 is a singlet, and X-ray absorption near-edge spectroscopy indicates that the chromium is significantly more oxidized in the solid state than in solution. An electronic description compounds to that of the tungsten and molybdenum analogues, but with considerably more charge transfer from the ligand to chromium via π donation, is in agreement with the experimental observations.

5.
Environ Sci Technol ; 47(11): 5668-78, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23634690

RESUMO

The mobility of uranium (U) in subsurface environments is controlled by interrelated adsorption, redox, and precipitation reactions. Previous work demonstrated the formation of nanometer-sized hydrogen uranyl phosphate (abbreviated as HUP) crystals on the cell walls of Bacillus subtilis, a non-U(VI)-reducing, Gram-positive bacterium. The current study examined the reduction of this biogenic, cell-associated HUP mineral by three dissimilatory metal-reducing bacteria, Anaeromyxobacter dehalogenans strain K, Geobacter sulfurreducens strain PCA, and Shewanella putrefaciens strain CN-32, and compared it to the bioreduction of abiotically formed and freely suspended HUP of larger particle size. Uranium speciation in the solid phase was followed over a 10- to 20-day reaction period by X-ray absorption fine structure spectroscopy (XANES and EXAFS) and showed varying extents of U(VI) reduction to U(IV). The reduction extent of the same mass of HUP to U(IV) was consistently greater with the biogenic than with the abiotic material under the same experimental conditions. A greater extent of HUP reduction was observed in the presence of bicarbonate in solution, whereas a decreased extent of HUP reduction was observed with the addition of dissolved phosphate. These results indicate that the extent of U(VI) reduction is controlled by dissolution of the HUP phase, suggesting that the metal-reducing bacteria transfer electrons to the dissolved or bacterially adsorbed U(VI) species formed after HUP dissolution, rather than to solid-phase U(VI) in the HUP mineral. Interestingly, the bioreduced U(IV) atoms were not immediately coordinated to other U(IV) atoms (as in uraninite, UO2) but were similar in structure to the phosphate-complexed U(IV) species found in ningyoite [CaU(PO4)2·H2O]. This indicates a strong control by phosphate on the speciation of bioreduced U(IV), expressed as inhibition of the typical formation of uraninite under phosphate-free conditions.


Assuntos
Geobacter/metabolismo , Myxococcales/metabolismo , Fosfatos/metabolismo , Shewanella putrefaciens/metabolismo , Compostos de Urânio/metabolismo , Bicarbonatos/química , Transporte de Elétrons , Oxirredução , Tamanho da Partícula , Fosfatos/química , Urânio/química , Urânio/metabolismo , Espectroscopia por Absorção de Raios X
6.
Langmuir ; 27(9): 5481-91, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21462990

RESUMO

Supported lipid bilayers containing phosphatidylcholine headgroups are observed to undergo reorganization from a 2D fluid, lipid bilayer assembly into an array of complex 3D structures upon exposure to extreme pH environments. These conditions induce a combination of molecular packing and electrostatic interactions that can create dynamic morphologies of highly curved lipid membrane structures. This work demonstrates that fluid, single-component lipid bilayer assemblies can create complex morphologies, a phenomenon typically only associated with lipid bilayers of mixed composition.


Assuntos
Bicamadas Lipídicas/química , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/metabolismo , Fluidez de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Relação Estrutura-Atividade
7.
Langmuir ; 27(4): 1457-62, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21155607

RESUMO

We demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (L(o)) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system. Fluorescence correlation spectroscopy confirmed the fluidity of the L(o) phase containing DPIDA. In the presence of CuCl(2), the iminodiacetic acid (IDA) headgroup of DPIDA forms the Cu(II)-IDA complex that exhibits a high affinity for histidine residues. His-tagged proteins were bound specifically to domains enriched in DPIDA, demonstrating the capacity to target protein binding selectively to both solid and L(o) phases. Steric pressure from the crowding of surface-bound proteins transformed the domains into tubules with persistence lengths that depended on the phase state of the lipid domains.


Assuntos
Proteínas/química , Lipossomas Unilamelares/química , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Modelos Químicos , Fosfatidilcolinas/química
8.
J Colloid Interface Sci ; 508: 75-86, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28822863

RESUMO

Remediation and prevention of environmental contamination by toxic metals is an ongoing issue. Additionally, improving water filtration systems is necessary to prevent toxic metals from circulating through the water supply. Graphene oxide (GO) is a highly sorptive material for a variety of heavy metals under different ionic strength conditions over a wide pH range, making it a promising candidate for use in metal adsorption from contaminated sites or in filtration systems. We present X-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Cd (II), U(VI) and Pb(II) ions onto multi-layered graphene oxide (MLGO). This study shows that the binding environment of each metal onto the MLGO is unique, with different behaviors governing the sorption as a function of pH. For Cd sorption to MLGO, the same mechanism of electrostatic attraction between the MLGO and the Cd+2 ions surrounded by water molecules prevails over the entire pH range studied. The U(VI), present in solution as the uranyl ion, shows only subtle changes as a function of pH, likely due to the varied speciation of uranium in solution. The adsorption of the U to the MLGO is through a covalent, inner-sphere bond. The only metal from this study where the dominant adsorption mechanism to the MLGO changes with pH is Pb. In this case, under lower pH conditions, Pb is bound onto the MLGO through dominantly outer-sphere, electrostatic adsorption, while under higher pH conditions, the bonding changes to be dominated by inner-sphere, covalent adsorption. Since each of the metals in this study show unique binding properties, it is possible that MLGO could be engineered to effectively adsorb specific metal ions from solution and optimize environmental remediation or filtration for each metal.

9.
Small ; 2(6): 793-803, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17193124

RESUMO

A variety of bifunctional crosslinking agents have been explored for stabilizing microtubule shuttles used for the active transport of nanomaterials in artificial environments. Crosslinking agents that target amine residues form intertubulin crosslinks that produce crosslinked microtubules (CLMTs) with structural and functional lifetimes that can be up to four times as long as those achieved with taxol stabilization. Such CLMTs are stable at temperatures down to -10 degrees C, are resistant to depolymerization induced by metal ions such as Ca2+, and yet continue to be adsorbed and transported by self-assembled monolayers containing the motor protein kinesin. However, crosslinkers that target cysteine residues depolymerize the MTs, probably by interfering with the guanosine triphosphate binding site. The impact of crosslink attributes, including terminal group chemistry, chain length, crosslink density, and specific location on the tubulin surface, on microtubule stability and functionality are discussed.


Assuntos
Cristalização/métodos , Microtúbulos/química , Microtúbulos/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Reagentes de Ligações Cruzadas/química , Estabilidade de Medicamentos , Substâncias Macromoleculares/química , Teste de Materiais , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
ACS Nano ; 10(9): 8645-59, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27583654

RESUMO

Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when two different metallic species are mixed at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesized with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy, and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods was then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence dependence in both surface structure and surface composition. Replica exchange with solute tempering molecular dynamics simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.

11.
J Nanosci Nanotechnol ; 5(5): 718-22, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16010927

RESUMO

Recently, kinesin biomolecular motors and microtubules filaments (MTs) were used to transport metal and semiconductor nanoparticles with the long-term goal of exploiting this active transport system to dynamically assemble nanostructured materials. In some cases, however, the presence of nanoparticle cargo on MTs was shown to inhibit transport by interfering with kinesin-MT interactions. The primary objectives of this work were (1) to determine what factors affect the ability of kinesin and MTs to transport nanoparticle cargo, and (2) to establish a functional parameter space in which kinesin and MTs can support unimpeded transport of nanoparticles and materials. Of the factors evaluated, nanoparticle density on a given MT was the most significant factor affecting kinesin-based transport of nanoparticles. The density of particles was controlled by limiting the number of available linkage sites (i.e., biotinylated tubulin), and/or the relative concentration of nanoparticles in solution. Nanoparticle size was also a significant factor affecting transport, and attributed to the ability of particles < 40 nm in diameter to bind to the "underside" of the MT, and block kinesin transport. Overall, a generalized method of assembling and transporting a range of nanoparticle cargo using kinesin and MTs was established.


Assuntos
Materiais Revestidos Biocompatíveis/química , Cristalização/métodos , Cinesinas/química , Microtúbulos/química , Proteínas Motores Moleculares/química , Nanotecnologia/métodos , Nanotubos/química , Materiais Revestidos Biocompatíveis/análise , Cinesinas/análise , Cinesinas/ultraestrutura , Teste de Materiais , Microtúbulos/ultraestrutura , Movimento (Física) , Nanotubos/ultraestrutura
12.
J Phys Chem Lett ; 5(9): 1575-82, 2014 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26270098

RESUMO

Successive ionic layer adsorption and reaction (SILAR) is a popular method of depositing the metal chalcogenide semiconductor layer on the mesoscopic metal oxide films for designing quantum-dot-sensitized solar cells (QDSSCs) or extremely thin absorber (ETA) solar cells. While this deposition method exhibits higher loading of the light-absorbing semiconductor layer than direct adsorption of presynthesized colloidal quantum dots, the chemical identity of these nanostructures and the evolution of interfacial structure are poorly understood. We have now analyzed step-by-step SILAR deposition of CdSe films on mesoscopic TiO2 nanoparticle films using X-ray absorption near-edge structure analysis and probed the interfacial structure of these films. The film characteristics interestingly show dependence on the order in which the Cd and Se are deposited, and the CdSe-TiO2 interface is affected only during the first few cycles of deposition. Development of a SeO2 passivation layer in the SILAR-prepared films to form a TiO2/SeO2/CdSe junction facilitates an increase in photocurrents and power conversion efficiencies of quantum dot solar cells when these films are integrated as photoanodes in a photoelectrochemical solar cell.

13.
ACS Nano ; 7(3): 2012-9, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23363365

RESUMO

Microtubules (MTs) and the MT-associated proteins (MAPs) are critical cooperative agents involved in complex nanoassembly processes in biological systems. These biological materials and processes serve as important inspiration in developing new strategies for the assembly of synthetic nanomaterials in emerging techologies. Here, we explore a dynamic biofabrication process, modeled after the form and function of natural aster-like MT assemblies such as centrosomes. Specifically, we exploit the cooperative assembly of MTs and MAPs to form artificial microtubule asters and demonstrate that (1) these three-dimensional biomimetic microtubule asters can be controllably, reversibly assembled and (2) they serve as unique, dynamic biotemplates for the organization of secondary nanomaterials. We describe the MAP-mediated assembly and growth of functionalized MTs onto synthetic particles, the dynamic character of the assembled asters, and the application of these structures as templates for three-dimensional nanocrystal organization across multiple length scales. This biomediated nanomaterials assembly strategy illuminates a promising new pathway toward next-generation nanocomposite development.


Assuntos
Nanopartículas/química , Animais , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Química Encefálica , Bovinos , Corantes Fluorescentes , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Nanopartículas/ultraestrutura , Nanotecnologia
14.
Adv Mater ; 24(7): 886-9, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22253076

RESUMO

A thermally responsive copolymer is designed to modulate the properties of an electrolyte solution. The copolymer is prepared using pNIPAM, which governs the thermal properties, and acrylic acid, which provides the electrolyte ions. As the polymer undergoes a thermally activated phase transition, the local environment around the acid groups is reversibly switched, decreasing ion concentration and conductivity. The responsive electrolyte is used to control the activity of redox electrodes with temperature.


Assuntos
Eletrólitos/química , Polímeros/química , Resinas Acrílicas/química , Técnicas Eletroquímicas , Eletrodos , Concentração de Íons de Hidrogênio , Oxirredução , Temperatura
15.
ACS Appl Mater Interfaces ; 4(11): 6247-51, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23130670

RESUMO

Many reactions in both chemistry and biology rely on the ability to precisely control and fix the solution concentrations of either protons or hydroxide ions. In this report, we describe the behavior of thermally programmable pH buffer systems based on the copolymerization of varying amounts of acrylic acid (AA) groups into N-isopropylacrylamide polymers. Because the copolymers undergo phase transitions upon heating and cooling, the local environment around the AA groups can be reversibly switched between hydrophobic and hydrophilic states affecting the ionization behavior of the acids. Results show that moderate temperature variations can be used to change the solution pH by two units. However, results also indicate that the nature of the transition and its impact on the pH values are highly dependent on the AA content and the degree of neutralization.


Assuntos
Acrilamidas/química , Acrilatos/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Teste de Materiais , Transição de Fase
16.
J Colloid Interface Sci ; 358(2): 635-8, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21477809

RESUMO

Understanding the interactions of nanoparticles with lipid membranes is crucial in establishing the mechanisms that govern assembly of membrane-based nanocomposites, nanotoxicology, and biomimetic inspired self-assembly. In this study, we explore binding of charged nanoparticles to lipid bilayers, both as liposomes and substrate supported assemblies. We find that the presence of a solid-support, regardless of curvature, eliminates the ability of zwitterionic fluid phase lipids to bind charged nanoparticles.


Assuntos
Bicamadas Lipídicas/química , Nanopartículas/química , Eletricidade Estática , Sítios de Ligação , Biomimética/métodos
17.
ACS Appl Mater Interfaces ; 2(3): 778-87, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20356281

RESUMO

Ruthenium oxide is a model pseudocapacitive materials exhibiting good electronic and protonic conduction and has been shown to achieve very high gravimetric capacitances. However, the capacitance of thermally prepared ruthenium oxide is generally low because of low protonic conductivity resulting from dehydration of the oxide upon annealing. High-temperature processing, however also produces the electrically conducting ruthenium oxide rutile phase, which is of great interest for electrochemical capacitors. Here, unusual electrochemical characteristics were obtained for thermally prepared ruthenium oxide when fabricated in the presence of alkyl-thiols at high temperature. The performance characteristics have been attributed to enhanced multifunctional properties of the material resulting from the novel processing. The processing method relies on a simple, solution-based strategy that utilizes a sacrificial organic template to sterically direct hierarchical architecture formation in electro-active ruthenium oxide. Thin films of the templated RuO(2) exhibit energy storage characteristics comparable to hydrous ruthenium oxide materials formed under dramatically different conditions. Extensive materials characterization has revealed that these property enhancements are associated with the retention of molecular-sized metal oxide clusters, high hydroxyl concentrations, and formation of hierarchical porosity in the ruthenium oxide thin films.

18.
ACS Appl Mater Interfaces ; 2(11): 3179-84, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20945871

RESUMO

Increased mass transport due to hemispherical diffusion is observed to occur in 3D porous carbon electrodes defined by interferometric lithography. Enhanced catalytic methanol oxidation, after modifying the porous carbon with palladium nanoparticles, and uncharacteristically uniform conducting polymer deposition into the structures are demonstrated. Both examples result in two regions of hierarchical porosity that can be created to maximize surface area, via nanostructuring, within the extended porous network, while taking advantage of hemispherical diffusion through the open pores.

19.
Environ Sci Technol ; 43(1): 94-100, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19209590

RESUMO

This study investigates the complexation environments of aqueous Pb and Cd in the presence of the trihydroxamate microbial siderophore, desferrioxamine-B (DFO-B) as a function of pH. Complexation of aqueous Pb and Cd with DFO-B was predicted using equilibrium speciation calculation. Synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy at Pb L(III) edge and Cd K edge was used to characterize Pb and Cd-DFO-B complexes at pH values predicted to best represent each of the metal-siderophore complexes. Pb was not found to be complexed measurably by DFO-B at pH 3.0, but was complexed by all three hydroxamate groups to form a totally "caged" hexadentate structure at pH 7.5-9.0. At the intermediate pH value (pH 4.8), a mixture of Pb-DFOB complexes involving binding of the metal through one and two hydroxamate groups was observed. Cd, on the other hand, remained as hydrated Cd2+ at pH 5.0, occurred as a mixture of Cd-DFOB and inorganic species at pH 8.0, and was bound by three hydroxamate groups from DFO-B at pH 9.0. Overall, the solution species observed with EXAFS were consistent with those predicted thermodynamically. However, Pb speciation at higher pH values differed from that predicted and suggests that published constants underestimate the binding constant for complexation of Pb with all three hydroxamate groups of the DFO-B ligand. This molecular-level understanding of metal-siderophore solution coordination provides physical evidence for complexes of Pb and Cd with DFO-B, and is an important first step toward understanding processes at the microbial- and/or mineral-water interface in the presence of siderophores.


Assuntos
Bactérias/metabolismo , Cádmio/isolamento & purificação , Desferroxamina/metabolismo , Chumbo/isolamento & purificação , Sideróforos/metabolismo , Água/química , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Soluções
20.
ACS Nano ; 3(4): 971-83, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19317440

RESUMO

Phospholipids comprise an enormous range of chemical structures that provide much of the functionality associated with cellular membranes. We have developed a simple method for incorporating phospholipids onto the surfaces of anisotropic gold nanorods as a stepping-stone for creating responsive and multifunctional nanocomposites. In this report, we demonstrate how phospholipids can be used to control the self-assembly of gold nanorods into agglomerate architectures ranging from open "end-to-end" networks to densely packed "side-to-side" arrays. The results indicate that lipid-gold nanorod assembly is governed by the tuning of electrostatic interactions within the phospholipid layers as well as by how the phospholipid layers organize themselves around anisotropic nanorod surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA