RESUMO
Invasive rodents are a major cause of environmental damage and biodiversity loss, particularly on islands. Unlike insects, genetic biocontrol strategies including population-suppressing gene drives with biased inheritance have not been developed in mice. Here, we demonstrate a gene drive strategy (tCRISPR) that leverages super-Mendelian transmission of the t haplotype to spread inactivating mutations in a haplosufficient female fertility gene (Prl). Using spatially explicit individual-based in silico modeling, we show that tCRISPR can eradicate island populations under a range of realistic field-based parameter values. We also engineer transgenic tCRISPR mice that, crucially, exhibit biased transmission of the modified t haplotype and Prl mutations at levels our modeling predicts would be sufficient for eradication. This is an example of a feasible gene drive system for invasive alien rodent population control.
Assuntos
Biodiversidade , Tecnologia de Impulso Genético , Camundongos , Feminino , Animais , Roedores , Genética Populacional , Repetições Palindrômicas Curtas Agrupadas e Regularmente EspaçadasRESUMO
Leukocyte homing driven by the chemokine CCL21 is pivotal for adaptive immunity because it controls dendritic cell (DC) and T cell migration through CCR7. ACKR4 scavenges CCL21 and has been shown to play an essential role in DC trafficking at the steady state and during immune responses to tumors and cutaneous inflammation. However, the mechanism by which ACKR4 regulates peripheral DC migration is unknown, and the extent to which it regulates CCL21 in steady-state skin and lymph nodes (LNs) is contested. Specifically, our previous findings that CCL21 levels are increased in LNs of ACKR4-deficient mice [I. Comerford et al., Blood 116, 4130-4140 (2010)] were refuted [M. H. Ulvmar et al., Nat. Immunol. 15, 623-630 (2014)], and no differences in CCL21 levels in steady-state skin of ACKR4-deficient mice were reported despite compromised CCR7-dependent DC egress in these animals [S. A. Bryce et al., J. Immunol. 196, 3341-3353 (2016)]. Here, we resolve these issues and reveal that two forms of CCL21, full-length immobilized and cleaved soluble CCL21, exist in steady-state barrier tissues, and both are regulated by ACKR4. Without ACKR4, extracellular CCL21 gradients in barrier sites are saturated and nonfunctional, DCs cannot home directly to lymphatic vessels, and excess soluble CCL21 from peripheral tissues pollutes downstream LNs. The results identify the mechanism by which ACKR4 controls DC migration in barrier tissues and reveal a complex mode of CCL21 regulation in vivo, which enhances understanding of functional chemokine gradient formation.
Assuntos
Movimento Celular , Quimiocina CCL21/metabolismo , Células Dendríticas/fisiologia , Linfonodos/metabolismo , Receptores CCR/metabolismo , Animais , Camundongos Endogâmicos C57BLRESUMO
Allogeneic bone marrow transplantation (allo-BMT) is a curative therapy for hematological malignancies, but is associated with significant complications, principally graft-versus-host disease (GVHD) and opportunistic infections. Natural killer (NK) cells mediate important innate immunity that provides a temporal bridge until the reconstruction of adaptive immunity. Here, we show that the development of GVHD after allo-BMT prevented NK-cell reconstitution, particularly within the maturing M1 and M2 NK-cell subsets in association with exaggerated activation, apoptosis, and autophagy. Donor T cells were critical in this process by limiting the availability of interleukin 15 (IL-15), and administration of IL-15/IL-15Rα or immune suppression with rapamycin could restore NK-cell reconstitution. Importantly, the NK-cell defect induced by GVHD resulted in the failure of NK-cell-dependent in vivo cytotoxicity and graft-versus-leukemia effects. Control of cytomegalovirus infection after allo-BMT was also impaired during GVHD. Thus, during GVHD, donor T cells compete with NK cells for IL-15 thereby inducing profound defects in NK-cell reconstitution that compromise both leukemia and pathogen-specific immunity.
Assuntos
Transplante de Medula Óssea/efeitos adversos , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Doença Enxerto-Hospedeiro/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Leucemia/imunologia , Animais , Autofagia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Citomegalovirus/isolamento & purificação , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/patologia , Feminino , Doença Enxerto-Hospedeiro/complicações , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Interleucina-15/imunologia , Leucemia/complicações , Leucemia/patologia , Leucemia/terapia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante Homólogo/efeitos adversosRESUMO
Donor T-cell-derived interleukin-17A (IL-17A) can mediate late immunopathology in graft-versus-host disease (GVHD), however protective roles remain unclear. Using multiple cytokine and cytokine receptor subunit knockout mice, we demonstrate that stem cell transplant recipients lacking the ability to generate or signal IL-17 develop intestinal hyper-acute GVHD. This protective effect is restricted to the molecular interaction of IL-17A and/or IL-17F with the IL-17 receptor A/C (IL-17RA/C). The protection from GVHD afforded by IL-17A required secretion from, and signaling in, both hematopoietic and nonhematopoietic host tissue. Given the intestinal-specificity of the disease in these animals, we cohoused wild-type (WT) with IL-17RA and IL-17RC-deficient mice, which dramatically enhanced the susceptibility of WT mice to acute GVHD. Furthermore, the gut microbiome of WT mice shifted toward that of the IL-17RA/C mice during cohousing prior to transplant, confirming that an IL-17-sensitive gut microbiota controls susceptibility to acute GVHD. Finally, induced IL-17A depletion peritransplant also enhanced acute GVHD, consistent with an additional protective role for this cytokine independent of effects on dysbiosis.
Assuntos
Microbioma Gastrointestinal/imunologia , Doença Enxerto-Hospedeiro , Interleucina-17/imunologia , Enteropatias , Doença Aguda , Animais , Modelos Animais de Doenças , Disbiose/genética , Disbiose/imunologia , Disbiose/patologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Interleucina-17/genética , Enteropatias/genética , Enteropatias/imunologia , Enteropatias/patologia , Transfusão de Linfócitos , Camundongos , Camundongos Knockout , Receptores de Interleucina/genética , Receptores de Interleucina/imunologia , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologiaRESUMO
IL-17-producing cells are important mediators of graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (SCT). Here we demonstrate that a distinct CD8(+) Tc17 population develops rapidly after SCT but fails to maintain lineage fidelity such that they are unrecognizable in the absence of a fate reporter. Tc17 differentiation is dependent on alloantigen presentation by host dendritic cells (DCs) together with IL-6. Tc17 cells express high levels of multiple prototypic lineage-defining transcription factors (eg, RORγt, T-bet) and cytokines (eg, IL-17A, IL-22, interferon-γ, granulocyte macrophage colony-stimulating factor, IL-13). Targeted depletion of Tc17 early after transplant protects from lethal acute GVHD; however, Tc17 cells are noncytolytic and fail to mediate graft-versus-leukemia (GVL) effects. Thus, the Tc17 differentiation program during GVHD culminates in a highly plastic, hyperinflammatory, poorly cytolytic effector population, which we term "inflammatory iTc17" (iTc17). Because iTc17 cells mediate GVHD without contributing to GVL, therapeutic inhibition of iTc17 development in a clinical setting represents an attractive approach for separating GVHD and GVL.
Assuntos
Linfócitos T CD8-Positivos/patologia , Doença Enxerto-Hospedeiro/patologia , Efeito Enxerto vs Leucemia , Interleucina-17/imunologia , Transplante de Células-Tronco/efeitos adversos , Células Th17/patologia , Animais , Transplante de Medula Óssea/efeitos adversos , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Doença Enxerto-Hospedeiro/imunologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Th17/imunologiaRESUMO
The atypical chemokine receptor CCX-CKR regulates bioavailability of CCL19, CCL21, and CCL25, homeostatic chemokines that play crucial roles in thymic lymphopoiesis. Deletion of CCX-CKR results in accelerated experimental autoimmunity induced by immunization. Here we show that CCX-CKR deletion also increases incidence of a spontaneous Sjögren's syndrome-like pathology, characterized by lymphocytic infiltrates in salivary glands and liver of CCX-CKR(-/-) mice, suggestive of a defect in self-tolerance when CCX-CKR is deleted. This prompted detailed examination of the thymus in CCX-CKR(-/-) mice. Negatively selected mature SP cells were less abundant in CCX-CKR(-/-) thymi, yet expansion of both DP and immature SP cells was apparent. Deletion of CCX-CKR also profoundly reduced proportions of DN3 thymocyte precursors and caused DN2 cells to accumulate within the medulla. These effects are likely driven by alterations in thymic stroma as CCX-CKR(-/-) mice have fewer cTECs per thymocyte, and cTECs express the highest level of CCX-CKR in the thymus. A profound decrease in CCL25 within the thymic cortex was observed in CCX-CKR(-/-) thymi, likely accounting for their defects in thymocyte distribution and frequency. These findings identify a novel role for CCX-CKR in regulating cTEC biology, which promotes optimal thymocyte development and selection important for self-tolerant adaptive immunity.
Assuntos
Autoimunidade , Linfopoese , Receptores de Quimiocinas/deficiência , Timócitos/patologia , Timo/patologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Quimiocinas/metabolismo , Quimiocinas CC/biossíntese , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Imunofenotipagem , Rim/patologia , Fígado/patologia , Linfopoese/genética , Masculino , Camundongos , Camundongos Knockout , Receptores CCR7/deficiência , Receptores CCR7/genética , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/fisiologia , Tolerância a Antígenos Próprios/genética , Tolerância a Antígenos Próprios/imunologia , Síndrome de Sjogren/genética , Síndrome de Sjogren/patologia , Células-Tronco/classificação , Células-Tronco/metabolismo , Células-Tronco/patologia , Glândula Submandibular/patologiaRESUMO
T-cell selection and development occurs as precursor cells journey through the thymus and interact with stromal cells residing in distinct microenvironments. Although the chemokines CCL19, CCL21, CCL25 and CXCL12 are known to have major roles in intrathymic migration of thymocytes and thymocyte precursors, the significance of other chemokines such as CCL20, which is also expressed in the thymus, is unknown. This is of particular interest given that the thymus is the location of development of the natural regulatory T-cell (nTreg) population and that the CCL20 receptor CCR6 has an important role in peripheral tolerance via control of Treg cell migration. However, whether the CCL20/CCR6 axis has a role in the formation or migration of nTregs in the thymus is unknown. In this study, we addressed this by analyzing expression of CCR6/CCL20 within the thymus and assessing their role in thymocyte development using Ccr6(-/-) mice. CCL20 is predominately expressed in the thymic medulla and CCR6 expression is restricted to nTregs and a subset of early thymocyte progenitor double-negative 1 (DN1) cells (CD4(-)CD8(-)CD25(-)CD44(+)CD117(+)). Ex vivo chemotaxis assays indicated that these two subsets were apparently the sole subsets of thymocytes responsive to CCL20. The data indicate that nTreg frequencies and localization are unperturbed by deletion of Ccr6. However, in Ccr6(-/-) thymi, reduced frequencies of DN2 and DN3 cells, the thymocyte progenitor subsets that follow the DN1 stage, were apparent. Together, these data indicate that CCR6 has a supplementary role in coordination of early thymocyte precursor migration events important for normal subsequent thymocyte precursor development, but is not required for normal nTreg development.
Assuntos
Diferenciação Celular/imunologia , Quimiotaxia/imunologia , Receptores CCR6/imunologia , Linfócitos T Reguladores/imunologia , Timócitos/imunologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Diferenciação Celular/genética , Quimiotaxia/genética , Camundongos , Camundongos Knockout , Receptores CCR6/genética , Linfócitos T Reguladores/citologia , Timócitos/citologiaRESUMO
CRISPR-Cas9 technology has facilitated development of strategies that can potentially provide more humane and effective methods to control invasive vertebrate species, such as mice. One promising strategy is X chromosome shredding which aims to bias offspring towards males, resulting in a gradual and unsustainable decline of females. This method has been explored in insects with encouraging results. Here, we investigated this strategy in Mus musculus by targeting repeat DNA sequences on the X chromosome with the aim of inducing sufficient DNA damage to specifically eliminate X chromosome-bearing sperm during gametogenesis. We tested three different guide RNAs (gRNAs) targeting different repeats on the X chromosome, together with three male germline-specific promoters for inducing Cas9 expression at different stages of spermatogenesis. A modest bias towards mature Y-bearing sperm was detected in some transgenic males, although this did not translate into significant male-biasing of offspring. Instead, cleavage of the X chromosome during meiosis typically resulted in a spermatogenic block, manifest as small testes volume, empty tubules, low sperm concentration, and sub/infertility. Our study highlights the importance of controlling the timing of CRISPR-Cas9 activity during mammalian spermatogenesis and the sensitivity of spermatocytes to X chromosome disruption.
Assuntos
Sistemas CRISPR-Cas , Espermatogênese , Cromossomo X , Animais , Masculino , Camundongos , Espermatogênese/genética , Cromossomo X/genética , Feminino , RNA Guia de Sistemas CRISPR-Cas/genética , Espermatozoides/metabolismo , Camundongos Transgênicos , Meiose/genéticaRESUMO
Gene drives are genetic elements that are transmitted to greater than 50% of offspring and have potential for population modification or suppression. While gene drives are known to occur naturally, the recent emergence of CRISPR-Cas9 genome-editing technology has enabled generation of synthetic gene drives in a range of organisms including mosquitos, flies, and yeast. For example, studies in Anopheles mosquitos have demonstrated >95% transmission of CRISPR-engineered gene drive constructs, providing a possible strategy for malaria control. Recently published studies have also indicated that it may be possible to develop gene drive technology in invasive rodents such as mice. Here, we discuss the prospects for gene drive development in mice, including synthetic "homing drive" and X-shredder strategies as well as modifications of the naturally occurring t haplotype. We also provide detailed protocols for generation of gene drive mice through incorporation of plasmid-based transgenes in a targeted and non-targeted manner. Importantly, these protocols can be used for generating transgenic mice for any project that requires insertion of kilobase-scale transgenes such as knock-in of fluorescent reporters, gene swaps, overexpression/ectopic expression studies, and conditional "floxed" alleles.
Assuntos
Tecnologia de Impulso Genético , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Espécies Introduzidas , Camundongos , Camundongos Transgênicos , TransgenesRESUMO
Natural killer (NK) cells reject major histocompatibility complex class I (MHC-I)-deficient bone marrow through direct cytotoxicity but not solid organ transplants devoid of MHC-I. Here, we demonstrate an immediate switch in NK cell function upon exit from the circulation, characterized by a shift from direct cytotoxicity to chemokine/cytokine production. In the skin transplant paradigm, combining an NK cell-specific activating ligand, m157, with missing self MHC-I resulted in complete graft rejection, which was dependent on NK cells as potential helpers and T cells as effectors. Extracellular matrix proteins, collagen I, collagen III, and elastin, blocked NK cell cytotoxicity and promoted their chemokine/cytokine production. NK cell cytotoxicity against MHC-I-deficient melanoma in the skin was markedly increased by blocking tumor collagen deposition. MHC-I down-regulation occurred in solid human cancers but not leukemias, which could be directly targeted by circulating cytotoxic NK cells. Our findings uncover a fundamental mechanism that restricts direct NK cell cytotoxicity in peripheral tissues.
Assuntos
Proteínas da Matriz Extracelular , Células Matadoras Naturais , Colágeno , Citocinas , Citotoxicidade Imunológica , Antígenos HLA , Antígenos de Histocompatibilidade Classe I , HumanosRESUMO
T lymphocytes are generated throughout life, arising from bone marrow-derived progenitors that complete an essential developmental process in the thymus. Thymic T cell education leads to the generation of a self-restricted and largely self-tolerant peripheral T-cell pool and is facilitated by interactions with thymic stromal cells residing in distinct supportive niches. The signals governing thymocyte precursor migration into the thymus, directing thymocyte navigation through thymic microenvironments and mature T-cell egress into circulation were, until recently, largely unknown, but presumed to be mediated to a large extent by chemokine signalling. Recent studies have now uncovered various specific functions for members of the chemokine superfamily in the thymus. These studies have not only revealed distinct but also in some cases overlapping roles for several chemokine family members in various thymocyte migration events and have also shown that homing and positioning of other cells in the thymus, such as dendritic cells and natural killer T cells is also chemokine-dependent. Here, we discuss current understanding of the role of chemokines in the thymus and highlight key future avenues for investigation in this field.
Assuntos
Movimento Celular/imunologia , Quimiocinas/imunologia , Timo/citologia , Timo/imunologia , Animais , Humanos , Receptores de Quimiocinas/imunologia , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/imunologiaRESUMO
Mucosal-associated invariant T (MAIT) cells are a unique innate-like T cell subset that responds to a wide array of bacteria and yeast through recognition of riboflavin metabolites presented by the MHC class I-like molecule MR1. Here, we demonstrate using MR1 tetramers that recipient MAIT cells are present in small but definable numbers in graft-versus-host disease (GVHD) target organs and protect from acute GVHD in the colon following bone marrow transplantation (BMT). Consistent with their preferential juxtaposition to microbial signals in the colon, recipient MAIT cells generate large amounts of IL-17A, promote gastrointestinal tract integrity, and limit the donor alloantigen presentation that in turn drives donor Th1 and Th17 expansion specifically in the colon after BMT. Allogeneic BMT recipients deficient in IL-17A also develop accelerated GVHD, suggesting MAIT cells likely regulate GVHD, at least in part, by the generation of this cytokine. Indeed, analysis of stool microbiota and colon tissue from IL-17A-/- and MR1-/- mice identified analogous shifts in microbiome operational taxonomic units (OTU) and mediators of barrier integrity that appear to represent pathways controlled by similar, IL-17A-dependent mechanisms. Thus, MAIT cells act to control barrier function to attenuate pathogenic T cell responses in the colon and, given their very high frequency in humans, likely represent an important population in clinical BMT.
Assuntos
Transplante de Medula Óssea , Colo/imunologia , Doenças do Colo/imunologia , Doença Enxerto-Hospedeiro/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células Th17/imunologia , Aloenxertos , Animais , Colo/patologia , Doenças do Colo/genética , Doenças do Colo/patologia , Feminino , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células T Invariantes Associadas à Mucosa/patologia , Células Th17/patologiaRESUMO
The primacy of the gastrointestinal (GI) tract in dictating the outcome of graft-versus-host disease (GVHD) is broadly accepted; however, the mechanisms controlling this effect are poorly understood. Here, we demonstrate that GVHD markedly enhances alloantigen presentation within the mesenteric lymph nodes (mLNs), mediated by donor CD103(+)CD11b(-) dendritic cells (DCs) that migrate from the colon under the influence of CCR7. Expansion and differentiation of donor T cells specifically within the mLNs is driven by profound levels of alloantigen, IL-12, and IL-6 promoted by Toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signals. Critically, alloantigen presentation in the mLNs imprints gut-homing integrin signatures on donor T cells, leading to their emigration into the GI tract where they mediate fulminant disease. These data identify a critical, anatomically distinct, donor DC subset that amplifies GVHD. We thus highlight multiple therapeutic targets and the ability of GVHD, once initiated by recipient antigen-presenting cells, to generate a profound, localized, and lethal feed-forward cascade of donor DC-mediated indirect alloantigen presentation and cytokine secretion within the GI tract.
Assuntos
Antígenos CD/metabolismo , Movimento Celular/imunologia , Colo/citologia , Células Dendríticas/metabolismo , Doença Enxerto-Hospedeiro/fisiopatologia , Cadeias alfa de Integrinas/metabolismo , Linfonodos/citologia , Análise de Variância , Animais , Citometria de Fluxo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptor para Produtos Finais de Glicação Avançada , Receptores CCR7/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos T/imunologiaRESUMO
The chemokine receptor CCR7 and its ligands CCL19 and CCL21 control a diverse array of migratory events in adaptive immune function. Most prominently, CCR7 promotes homing of T cells and DCs to T cell areas of lymphoid tissues where T cell priming occurs. However, CCR7 and its ligands also contribute to a multitude of adaptive immune functions including thymocyte development, secondary lymphoid organogenesis, high affinity antibody responses, regulatory and memory T cell function, and lymphocyte egress from tissues. In this survey, we summarise the role of CCR7 in adaptive immunity and describe recent progress in understanding how this axis is regulated. In particular we highlight CCX-CKR, which scavenges both CCR7 ligands, and discuss its emerging significance in the immune system.