RESUMO
The short arms of the human acrocentric chromosomes 13, 14, 15, 21 and 22 (SAACs) share large homologous regions, including ribosomal DNA repeats and extended segmental duplications1,2. Although the resolution of these regions in the first complete assembly of a human genome-the Telomere-to-Telomere Consortium's CHM13 assembly (T2T-CHM13)-provided a model of their homology3, it remained unclear whether these patterns were ancestral or maintained by ongoing recombination exchange. Here we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. Utilizing an all-to-all comparison of the human pangenome from the Human Pangenome Reference Consortium4 (HPRC), we find that contigs from all of the SAACs form a community. A variation graph5 constructed from centromere-spanning acrocentric contigs indicates the presence of regions in which most contigs appear nearly identical between heterologous acrocentric chromosomes in T2T-CHM13. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the pseudo-homologous regions than in the corresponding short and long arms, indicating higher rates of recombination6,7. The pseudo-homologous regions include sequences that have previously been shown to lie at the breakpoint of Robertsonian translocations8, and their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14 and 21. The ubiquity of signals of recombination between heterologous acrocentric chromosomes seen in the HPRC draft pangenome suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed from cytogenetic studies 50 years ago9.
Assuntos
Centrômero , Cromossomos Humanos , Recombinação Genética , Humanos , Centrômero/genética , Cromossomos Humanos/genética , DNA Ribossômico/genética , Recombinação Genética/genética , Translocação Genética/genética , Citogenética , Telômero/genéticaRESUMO
Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals1. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.
Assuntos
Genoma Humano , Genômica , Humanos , Diploide , Genoma Humano/genética , Haplótipos/genética , Análise de Sequência de DNA , Genômica/normas , Padrões de Referência , Estudos de Coortes , Alelos , Variação GenéticaRESUMO
RESEARCH QUESTION: Can a methodology be developed for case selection and whole-exome sequencing (WES) analysis of women who are infertile owing to recurrent oocyte maturation defects (OOMD) and/or preimplantation embryo lethality (PREMBL)? DESIGN: Data were collected from IVF patients attending the Istanbul Memorial Hospital (2015-2021). A statistical methodology to identify infertile endophenotypes (recurrent low oocyte maturation rate, low fertilization rate and preimplantation developmental arrest) was developed using a large IVF dataset (11,221 couples). Twenty-eight infertile women with OOMD/PREMBL were subsequently enrolled for WES on their genomic DNA. Pathogenic variants were prioritized using a custom-made bioinformatic pipeline set to minimize false-positive discoveries through resampling in control cohorts (the Human Genome Diversity Project and 1343 whole-exome sequences from oocyte donors). Individual single-cell RNA sequencing data from 18 human metaphase II (MII) oocytes and antral granulosa cells was used for genome-wide validation. WES and bioinformatics were performed at Igenomix and the National Research Council, Italy. RESULTS: Variant prioritization analysis identified 265 unique variants in 248 genes (average 22.4 per sample). Of the genes harbouring high-impact variants 78% were expressed by MII oocytes and/or antral granulosa cells, significantly higher than for random sample of controls (odds ratioâ¯=â¯5, Fisher's exact Pâ¯=â¯0.0004). Seven of the 28 women (25%) were homozygous carriers of missense pathogenic variants in known candidate genes for OOMD/PREMBL, including PATL2, NLRP5 (nâ¯=â¯2),TLE6, PADI6, TUBB8 and TRIP13. Furthermore, novel gene-disease associations were identified. In fact, one woman with a low oocyte maturation rate was a homozygous carrier of high-impact variants in ENSA, an essential gene for prophase I meiotic transition in mice. CONCLUSIONS: This analytical framework could reveal known and new genes associated with isolated recurrent OOMD/PREMBL, providing essential indications for scaling this strategy to larger studies.
Assuntos
Infertilidade Feminina , ATPases Associadas a Diversas Atividades Celulares , Animais , Proteínas de Ciclo Celular/genética , Exoma , Feminino , Humanos , Infertilidade Feminina/genética , Camundongos , Oócitos/patologia , Oogênese , Tubulina (Proteína)/genética , Sequenciamento do ExomaRESUMO
Endoderm-derived organs as liver and pancreas are potential targets for regenerative therapies, and thus, there is great interest in understanding the pathways that regulate the induction and specification of this germ layer. Currently, the knowledge of molecular mechanisms that guide the in vivo endoderm specification is restricted by the lack of early endoderm specific markers. Nephrocan (Nepn) is a gene whose expression characterizes the early stages of murine endoderm specification (E7.5-11.5) and encodes a secreted N-glycosylated protein. In the present study, we report the identification of a new transcript variant that is generated through alternative splicing. The new variant was found to have differential and tissue specific expression in the adult mouse. In order to better understand Nepn role during endoderm specification, we generated Nepn knock-out (KO) mice. Nepn-/- mice were born at Mendelian ratios and displayed no evident phenotype compared to WT mice. In addition, we produced nullizygous mouse embryonic stem cell (mESC) line lacking Nepn by applying (CRISPR)/CRISPR-associated systems 9 (Cas9) and employed a differentiation protocol toward endoderm lineage. Our in vitro results revealed that Nepn loss affects the endoderm differentiation impairing the expression of posterior foregut-associated markers.
Assuntos
Padronização Corporal/genética , Endoderma/embriologia , Endoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Loci Gênicos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genéticaRESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma. METHODS: We tested the effect of budesonide and the classical GCs on the morphology, proliferation, migration and invasiveness of patient-derived PDAC cells and pancreatic cancer cell lines, using 2D and 3D cultures in vitro. Furthermore, a xenograft model was used to investigate the effect of budesonide on PDAC tumor growth in vivo. Finally, we combined genome-wide transcriptome analysis with genetic and pharmacological approaches to explore the mechanisms underlying budesonide activities in the different environmental conditions. RESULTS: We found that in 2D culture settings, high micromolar concentrations of budesonide reduced the mesenchymal invasive/migrating features of PDAC cells, without affecting proliferation or survival. This activity was specific and independent of the Glucocorticoid Receptor (GR). Conversely, in a more physiological 3D environment, low nanomolar concentrations of budesonide strongly reduced PDAC cell proliferation in a GR-dependent manner. Accordingly, we found that budesonide reduced PDAC tumor growth in vivo. Mechanistically, we demonstrated that the 3D environment drives the cells towards a general metabolic reprogramming involving protein, lipid, and energy metabolism (e.g., increased glycolysis dependency). This metabolic change sensitizes PDAC cells to the anti-proliferative effect of budesonide, which instead induces opposite changes (e.g., increased mitochondrial oxidative phosphorylation). Finally, we provide evidence that budesonide inhibits PDAC growth, at least in part, through the tumor suppressor CDKN1C/p57Kip2. CONCLUSIONS: Collectively, our study reveals that the microenvironment influences the susceptibility of PDAC cells to GCs and provides unprecedented evidence for the anti-proliferative activity of budesonide on PDAC cells in 3D conditions, in vitro and in vivo. Our findings may explain, at least in part, the reason for the lower occurrence of pancreatic cancer in asthmatic patients and suggest a potential suitability of budesonide for clinical trials as a therapeutic approach to fight pancreatic cancer.
Assuntos
Budesonida , Proliferação de Células , Metabolismo Energético , Neoplasias Pancreáticas , Humanos , Budesonida/farmacologia , Budesonida/uso terapêutico , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Metabolismo Energético/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Movimento Celular/efeitos dos fármacosRESUMO
Miscarriage is the spontaneous termination of a pregnancy before 24 weeks of gestation. We studied the genome of euploid miscarried embryos from mothers in the range of healthy adult individuals to understand genetic susceptibility to miscarriage not caused by chromosomal aneuploidies. We developed GP , a pipeline that we used to prioritize 439 unique variants in 399 genes, including genes known to be associated with miscarriages. Among the prioritized genes we found STAG2 coding for the cohesin complex subunit, for which inactivation in mouse is lethal, and TLE4 a target of Notch and Wnt, physically interacting with a region on chromosome 9 associated to miscarriages.
Assuntos
Aborto Espontâneo/genética , Aneuploidia , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos Par 9/genética , Feminino , Humanos , Camundongos , Proteínas Nucleares , Gravidez , Receptores Notch/genética , Proteínas Repressoras , Proteínas Wnt/genética , CoesinasRESUMO
BACKGROUND: Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood. METHODS: LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively. The contribution of LAMC2 to PDAC tumorigenicity was explored in vitro by tumor cell invasion, migration, sphere-forming and organoids assays, and in vivo by tumor growth and metastatic assays. mRNA sequencing was performed to identify key cellular pathways upregulated in LAMC2 expressing cells. Metastatic spreading induced by LAMC2- expressing cells was blocked by pharmacological inhibition of transforming growth factor beta (TGF-ß) signaling. RESULTS: We report a LAMC2-expressing cell population, which is endowed with enhanced self-renewal capacity, and is sufficient for tumor initiation and differentiation, and drives metastasis. mRNA profiling of these cells indicates a prominent squamous signature, and differentially activated pathways critical for tumor growth and metastasis, including deregulation of the TGF-ß signaling pathway. Treatment with Vactosertib, a new small molecule inhibitor of the TGF-ß type I receptor (activin receptor-like kinase-5, ALK5), completely abrogated lung metastasis, primarily originating from LAMC2-expressing cells. CONCLUSIONS: We have identified a highly metastatic subpopulation of TICs marked by LAMC2. Strategies aimed at targeting the LAMC2 population may be effective in reducing tumor aggressiveness in PDAC patients. Our results prompt further study of this TIC population in pancreatic cancer and exploration as a potential therapeutic target and/or biomarker.