Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Ann Neurol ; 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534060

RESUMO

OBJECTIVE: Genetic factors have long been debated as a cause of failure of surgery for mesial temporal lobe epilepsy (MTLE). We investigated whether rare genetic variation influences seizure outcomes of MTLE surgery. METHODS: We performed an international, multicenter, whole exome sequencing study of patients who underwent surgery for drug-resistant, unilateral MTLE with normal magnetic resonance imaging (MRI) or MRI evidence of hippocampal sclerosis and ≥2-year postsurgical follow-up. Patients with either sustained seizure freedom (favorable outcome) or ongoing uncontrolled seizures since surgery (unfavorable outcome) were included. Exomes of controls without epilepsy were also included. Gene set burden analyses were carried out to identify genes with significant enrichment of rare deleterious variants in patients compared to controls. RESULTS: Nine centers from 3 continents contributed 206 patients operated for drug-resistant unilateral MTLE, of whom 196 (149 with favorable outcome and 47 with unfavorable outcome) were included after stringent quality control. Compared to 8,718 controls, MTLE cases carried a higher burden of ultrarare missense variants in constrained genes that are intolerant to loss-of-function (LoF) variants (odds ratio [OR] = 2.6, 95% confidence interval [CI] = 1.9-3.5, p = 1.3E-09) and in genes encoding voltage-gated cation channels (OR = 2.4, 95% CI = 1.4-3.8, p = 2.7E-04). Proportions of subjects with such variants were comparable between patients with favorable outcome and those with unfavorable outcome, with no significant between-group differences. INTERPRETATION: Rare variation contributes to the genetic architecture of MTLE, but does not appear to have a major role in failure of MTLE surgery. These findings can be incorporated into presurgical decision-making and counseling. ANN NEUROL 2022.

2.
Epilepsia ; 62(6): 1329-1342, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826137

RESUMO

OBJECTIVE: To determine if long interspersed element-1 (L1) retrotransposons convey risk for idiopathic temporal lobe epilepsy (TLE). METHODS: Surgically resected temporal cortex from individuals with TLE (N = 33) and postmortem temporal cortex from individuals with no known neurological disease (N = 33) were analyzed for L1 content by Restriction Enzyme Based Enriched L1Hs sequencing (REBELseq). Expression of three KCNIP4 splice variants was assessed by droplet digital PCR (ddPCR). Protein ANalysis THrough Evolutionary Relationships (PANTHER) was used to determine ontologies and pathways for lists of genes harboring L1 insertions. RESULTS: We identified novel L1 insertions specific to individuals with TLE, and others specific to controls. Although there were no statistically significant differences between cases and controls in the numbers of known and novel L1 insertions, PANTHER analyses of intragenic L1 insertions showed statistically significant enrichments for epilepsy-relevant gene ontologies in both cases and controls. Gene ontologies "neuron projection development" and "calcium ion transmembrane transport" were among those found only in individuals with TLE. We confirmed novel L1 insertions in several genes associated with seizures/epilepsy, including a de novo somatic L1 retrotransposition in KCNIP4 that occurred after neural crest formation in one patient. However, ddPCR results suggest this de novo L1 did not alter KCNIP4 mRNA expression. SIGNIFICANCE: Given current data from this small cohort, we conclude that L1 elements, either rare heritable germline insertions or de novo somatic retrotranspositions, may contribute only minimally to overall genetic risk for idiopathic TLE. We suggest that further studies in additional patients and additional brain regions are warranted.


Assuntos
Elementos de DNA Transponíveis/genética , Epilepsia do Lobo Temporal/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Adulto , Cálcio/metabolismo , Biologia Computacional , Eletroencefalografia , Epilepsia do Lobo Temporal/epidemiologia , Feminino , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Valores de Referência , Fatores de Risco , Lobo Temporal/química
3.
Epilepsy Behav ; 98(Pt A): 249-257, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31398689

RESUMO

Comorbidities associated with epilepsy greatly reduce patients' quality of life. Since antiepilepsy drugs show limited success in ameliorating cognitive and behavioral symptoms, there is a need to better understand the mechanisms underlying epilepsy-related cognitive and behavioral impairments. Most prior research addressing this problem has focused on chronic epilepsy, wherein many factors can simultaneously impact cognition and behavior. The purpose of the present study was to develop a testing paradigm using mice that can provide new insight into how short-term biological changes underlying acute seizures impact cognition and behavior. In Experiment 1, naïve C57BL/6J mice were subjected to either three brief, generalized electroconvulsive seizure (ECS) or three sham treatments equally spaced over the course of 30 min. Over the next 2 h, mice were tested in a novel object recognition paradigm. Follow-up studies examined locomotor activity immediately before and after (Experiment 2), immediately after (Experiment 3), and 45 min after (Experiment 4) a set of three ECS or sham treatments. Whereas results demonstrated that there was no statistically significant difference in recognition memory acquisition between ECS and sham-treated mice, measures of anxiety-like behavior were increased and novel object interest was decreased in ECS-treated mice compared with that in sham. Interestingly, ECS also produced a delayed inhibitory effect on locomotion, decreasing open-field activity 45-min posttreatment compared to sham. We conclude that a small cluster of brief seizures can have acute, behaviorally relevant effects in mice, and that greater emphasis should be placed on events that take place before chronic epilepsy is established in order to better understand epilepsy-related cognitive and behavioral impairments. Future research would benefit from using the paradigms defined above to study the effects of individual seizures on mouse cognition and behavior.


Assuntos
Cognição/fisiologia , Comportamento Exploratório/fisiologia , Atividade Motora/fisiologia , Reconhecimento Psicológico/fisiologia , Convulsões/psicologia , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Eletrochoque/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Qualidade de Vida/psicologia , Convulsões/etiologia
4.
Brain ; 136(Pt 10): 3140-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24014518

RESUMO

Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.


Assuntos
Epilepsia do Lobo Temporal/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Esclerose/genética , Convulsões Febris/genética , Epilepsia do Lobo Temporal/etiologia , Estudo de Associação Genômica Ampla/métodos , Hipocampo/patologia , Humanos , Estudos Prospectivos , Convulsões Febris/diagnóstico , Lobo Temporal/patologia
5.
BMC Genomics ; 14: 678, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24090483

RESUMO

BACKGROUND: Blood-brain barrier (BBB) disruption is an integral feature of numerous neurological disorders. However, there is a relative lack of knowledge regarding the underlying molecular mechanisms of immune-mediated BBB disruption. We have previously shown that CD8 T cells and perforin play critical roles in initiating altered permeability of the BBB in the peptide-induced fatal syndrome (PIFS) model developed by our laboratory. Additionally, despite having indistinguishable CD8 T cell responses, C57BL/6J (B6) mice are highly susceptible to PIFS, exhibiting functional motor deficits, increased astrocyte activation, and severe CNS vascular permeability, while 129S1/SvImJ (129S1) mice remain resistant. Therefore, to investigate the potential role of genetic factors, we performed a comprehensive genetic analysis of (B6 x 129S1) F2 progeny to define quantitative trait loci (QTL) linked to the phenotypic characteristics stated above that mediate CD8 T cell-initiated BBB disruption. RESULTS: Using single nucleotide polymorphism (SNP) markers and a 95% confidence interval, we identified one QTL (PIFS1) on chromosome 12 linked to deficits in motor function (SNP markers rs6292954, rs13481303, rs3655057, and rs13481324, LOD score = 3.3). In addition we identified a second QTL (PIFS2) on chromosome 17 linked to changes in CNS vascular permeability (SNP markers rs6196216 and rs3672065, LOD score = 3.7). CONCLUSIONS: The QTL critical intervals discovered have allowed for compilation of a list of candidate genes implicated in regulating functional deficit and CNS vascular permeability. These genes encode for factors that may be potential targets for therapeutic approaches to treat disorders characterized by CD8 T cell-mediated BBB disruption.


Assuntos
Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Linfócitos T CD8-Positivos/imunologia , Permeabilidade Capilar/genética , Estudos de Associação Genética , Locos de Características Quantitativas/genética , Animais , Astrócitos/patologia , Barreira Hematoencefálica/imunologia , Permeabilidade Capilar/imunologia , Distribuição de Qui-Quadrado , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Característica Quantitativa Herdável , Síndrome
6.
Epilepsy Behav ; 28 Suppl 1: S63-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23756483

RESUMO

Several GWAS focused on common forms of epilepsy are underway. Currently, only one locus has been published that reached genome wide statistical significance. Two other loci that also reach genome wide statistical significance have been reported as preliminary data and are awaiting publication. Several additional loci identified in these studies fall just short of statistical significance, and it is hoped that future large scale meta-analyses will confirm these early findings and identify new loci that influence common forms of human epilepsy. Next generation DNA sequencing (NGS) studies are also underway and in the future will identify rare DNA variations of large effect that also contribute to the final epilepsy phenotypes under study. Finally, these studies have the potential to identify biomarkers of antiepileptic drug (AED) response as epilepsy patient GWAS and NGS data are stratified based on AED efficacy and tolerability.


Assuntos
Epilepsia/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Humanos
7.
Genes (Basel) ; 14(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37107600

RESUMO

Glioblastoma (GBM) is an aggressive brain cancer with a median survival time of 14.6 months after diagnosis. GBM cells have altered metabolism and exhibit the Warburg effect, preferentially producing lactate under aerobic conditions. After standard-of-care treatment for GBM, there is an almost 100% recurrence rate. Hypoxia-adapted, treatment-resistant GBM stem-like cells are thought to drive this high recurrence rate. We used human T98G GBM cells as a model to identify differential gene expression induced by hypoxia and to search for potential therapeutic targets of hypoxia adapted GBM cells. RNA sequencing (RNAseq) and bioinformatics were used to identify differentially expressed genes (DEGs) and cellular pathways affected by hypoxia. We also examined expression of lactate dehydrogenase (LDH) genes using qRT-PCR and zymography as LDH dysregulation is a feature of many cancers. We found 2630 DEGs significantly altered by hypoxia (p < 0.05), 1241 upregulated in hypoxia and 1389 upregulated in normoxia. Hypoxia DEGs were highest in pathways related to glycolysis, hypoxia response, cell adhesion and notably the endoplasmic reticulum, including the inositol-requiring enzyme 1 (IRE1)-mediated unfolded protein response (UPR). These results, paired with numerous published preclinical data, provide additional evidence that inhibition of the IRE1-mediated UPR may have therapeutic potential in treating GBM. We propose a possible drug repurposing strategy to simultaneously target IRE1 and the spleen tyrosine kinase (SYK) in patients with GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Análise de Sequência de RNA , Hipóxia/genética
8.
PLoS One ; 18(11): e0292674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910493

RESUMO

The United States continues to be impacted by decades of an opioid misuse epidemic, worsened by the COVID-19 pandemic and by the growing prevalence of highly potent synthetic opioids (HPSO) such as fentanyl. In instances of a toxicity event, first-response administration of reversal medications such as naloxone can be insufficient to fully counteract the effects of HPSO, particularly when there is co-occurring substance use. In an effort to characterize and study this multi-faceted problem, the Camden Opioid Research Initiative (CORI) has been formed. The CORI study has collected and analyzed post-mortem toxicology data from 42 cases of decedents who expired from opioid-related toxicity in the South New Jersey region to characterize substance use profiles. Co-occurring substance use, whether by intent or through possible contamination of the illicit opioid supply, is pervasive among deaths due to opioid toxicity, and evidence of medication-assisted treatment is scarce. Nearly all (98%) of the toxicology cases show the presence of the HPSO, fentanyl, and very few (7%) results detected evidence of medication-assisted treatment for opioid use disorder, such as buprenorphine or methadone, at the time of death. The opioid toxicity reversal drug, naloxone, was detected in 19% of cases, but 100% of cases expressed one or more stimulants, and sedatives including xylazine were detected in 48% of cases. These results showing complex substance use profiles indicate that efforts at mitigating the opioid misuse epidemic must address the complications presented by co-occurring stimulant and other substance use, and reduce barriers to and stigmas of seeking effective medication-assisted treatments.


Assuntos
Overdose de Drogas , Transtornos Relacionados ao Uso de Opioides , Humanos , Estados Unidos , Analgésicos Opioides/efeitos adversos , Pandemias , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Fentanila/efeitos adversos , Naloxona/uso terapêutico , Overdose de Drogas/epidemiologia
9.
Epilepsia ; 53(8): 1429-35, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22612065

RESUMO

PURPOSE: Most common forms of human epilepsy result from a complex combination of polygenetic and environmental factors. Quantitative trait locus (QTL) mapping is a first step toward the nonbiased discovery of epilepsy-related candidate genes. QTL studies of susceptibility to induced seizures in mouse strains have consistently converged on a distal region of chromosome 1 as a major phenotypic determinant; however, its influence on spontaneous epilepsy remains unclear. In the present study we characterized the influence of allelic variations within this QTL, termed Szs1, on the occurrence of spontaneous spike-wave discharges (SWDs) characteristic of absence seizures in DBA/2 (D2) mice. METHODS: We analyzed SWD occurrence and patterns in freely behaving D2, C57BL/6 (B6) and the congenic strains D2.B6-Szs1 and B6.D2-Szs1. KEY FINDINGS: We showed that congenic manipulation of the Szs1 locus drastically reduced the number and the duration of SWDs in D2.B6-Szs1 mice, which are homozygous for Szs1 from B6 strain on a D2 strain background. However, it failed to induce the full expression of SWDs in the reverse congenic animals B6.D2-Szs1. SIGNIFICANCE: Our results demonstrate that the occurrence of SWDs in D2 animals is under polygenic control and, therefore, the D2 and B6 strains might be a useful model to dissect the genetic determinants of polygenic SWDs characteristic of typical absence seizures. Furthermore, we point to the existence of epistatic interactions between at least one modifier gene within Szs1 and genes within unlinked QTLs in regulating the occurrence of spontaneous nonconvulsive forms of epilepsies.


Assuntos
Mapeamento Cromossômico , Epilepsia Tipo Ausência/genética , Locos de Características Quantitativas/genética , Animais , Animais Congênicos/genética , Encéfalo/fisiopatologia , Eletroencefalografia , Epilepsia Tipo Ausência/fisiopatologia , Predisposição Genética para Doença/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
10.
Pharmaceutics ; 14(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36145611

RESUMO

Pharmacogenetics (PGx) has the potential to improve opioid medication management. Here, we present patient perception data, pharmacogenetic data and medication management trends in patients with chronic pain (arm 1) and opioid use disorder (arm 2) treated at Cooper University Health Care in Camden City, NJ. Our results demonstrate that the majority of patients in both arms of the study (55% and 65%, respectively) are open to pharmacogenetic testing, and most (66% and 69%, respectively) believe that genetic testing has the potential to improve their medical care. Our results further support the potential for CYP2D6 PGx testing to inform chronic pain medication management for poor metabolizers (PMs) and ultrarapid metabolizers (UMs). Future efforts to implement PGx testing in chronic pain management, however, must address patient concerns about genetic test result access and genetic discrimination.

11.
Neurology ; 98(20): e2046-e2059, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35314505

RESUMO

BACKGROUND AND OBJECTIVES: KCNC2 encodes Kv3.2, a member of the Shaw-related (Kv3) voltage-gated potassium channel subfamily, which is important for sustained high-frequency firing and optimized energy efficiency of action potentials in the brain. The objective of this study was to analyze the clinical phenotype, genetic background, and biophysical function of disease-associated Kv3.2 variants. METHODS: Individuals with KCNC2 variants detected by exome sequencing were selected for clinical, further genetic, and functional analysis. Cases were referred through clinical and research collaborations. Selected de novo variants were examined electrophysiologically in Xenopus laevis oocytes. RESULTS: We identified novel KCNC2 variants in 18 patients with various forms of epilepsy, including genetic generalized epilepsy (GGE), developmental and epileptic encephalopathy (DEE) including early-onset absence epilepsy, focal epilepsy, and myoclonic-atonic epilepsy. Of the 18 variants, 10 were de novo and 8 were classified as modifying variants. Eight drug-responsive patients became seizure-free using valproic acid as monotherapy or in combination, including severe DEE cases. Functional analysis of 4 variants demonstrated gain of function in 3 severely affected DEE cases and loss of function in 1 case with a milder phenotype (GGE) as the underlying pathomechanisms. DISCUSSION: These findings implicate KCNC2 as a novel causative gene for epilepsy and emphasize the critical role of KV3.2 in the regulation of brain excitability.


Assuntos
Epilepsia Generalizada , Epilepsia , Epilepsia/genética , Epilepsia Generalizada/genética , Humanos , Fenótipo , Convulsões/genética , Canais de Potássio Shaw/genética , Sequenciamento do Exoma
12.
BMC Med Genomics ; 14(1): 16, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413350

RESUMO

BACKGROUND: The opioid use disorder and overdose crisis in the United States affects public health as well as social and economic welfare. While several genetic and non-genetic risk factors for opioid use disorder have been identified, many of the genetic associations have not been independently replicated, and it is not well understood how these factors interact. This study is designed to evaluate relationships among these factors prospectively to develop future interventions to help prevent or treat opioid use disorder. METHODS: The Genomics of Opioid Addiction Longitudinal Study (GOALS) is a prospective observational study assessing the interplay of genetic and non-genetic by collecting comprehensive genetic and non-genetic information on 400 participants receiving medication for opioid use disorder. Participants will be assessed at four time points over 1 year. A saliva sample will be collected for large-scale genetic data analyses. Non-genetic assessments include validated surveys measuring addiction severity, depression, anxiety, and adverse childhood experiences, as well as treatment outcomes such as urine toxicology results, visit frequency, and number of pre and post-treatment overdoses extracted from electronic medical records. DISCUSSION: We will use these complex data to investigate the relative contributions of genetic and non-genetic risk factors to opioid use disorder and related treatment outcomes.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Adulto , Genômica , Humanos , Estudos Longitudinais , Masculino , Estados Unidos
13.
Genes (Basel) ; 12(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34573423

RESUMO

We performed a genome-wide association study (GWAS) to identify genetic variation associated with common forms of idiopathic generalized epilepsy (GE) and focal epilepsy (FE). Using a cohort of 2220 patients and 14,448 controls, we searched for single nucleotide polymorphisms (SNPs) associated with GE, FE and both forms combined. We did not find any SNPs that reached genome-wide statistical significance (p ≤ 5 × 10-8) when comparing all cases to all controls, and few SNPs of interest comparing FE cases to controls. However, we document multiple linked SNPs in the PADI6-PADI4 genes that reach genome-wide significance and are associated with disease when comparing GE cases alone to controls. PADI genes encode enzymes that deiminate arginine to citrulline in molecular pathways related to epigenetic regulation of histones and autoantibody formation. Although epilepsy genetics and treatment are focused strongly on ion channel and neurotransmitter mechanisms, these results suggest that epigenetic control of gene expression and the formation of autoantibodies may also play roles in epileptogenesis.


Assuntos
Epilepsia Generalizada/genética , Polimorfismo de Nucleotídeo Único , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 6/genética , Negro ou Afro-Americano/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 1 , Epilepsias Parciais/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , População Branca/genética
14.
Epilepsia ; 51(9): 1882-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20491876

RESUMO

We performed a meta-analysis to evaluate the association between ABCB1 C3435T polymorphisms and the prevalence of epilepsy, including all relevant human studies (until June 2009), in which patients with or without epilepsy had undergone genotyping for the ABCB1 gene. Odds ratios (ORs) were calculated using a random effects model. We identified 9 case-control studies that included a total of 3,996 patients (2,454 with epilepsy and 1,542 nonepileptic subjects). No association was found between ABCB1 C3435T polymorphisms and the risk of having epilepsy (odds ratio 1.07, 95% confidence interval 0.76-1.51; p = 0.34). ABCB1 genotyping for epileptic patients is not warranted.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos/genética , Epilepsia/genética , Predisposição Genética para Doença/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Alelos , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Razão de Chances , Polimorfismo de Nucleotídeo Único/genética , Polimorfismo de Nucleotídeo Único/fisiologia
15.
Epilepsia ; 51(9): 1707-13, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20831751

RESUMO

PURPOSE: KCNJ10 encodes subunits of inward rectifying potassium (Kir) channel Kir4.1 found predominantly in glial cells within the brain. Genetic inactivation of these channels in glia impairs extracellular K(+) and glutamate clearance and produces a seizure phenotype. In both mice and humans, polymorphisms and mutations in the KCNJ10 gene have been associated with seizure susceptibility. The purpose of the present study was to determine whether there are differences in Kir channel activity and potassium- and glutamate-buffering capabilities between astrocytes from seizure resistant C57BL/6 (B6) and seizure susceptible DBA/2 (D2) mice that are consistent with an altered K(+) channel activity as a result of genetic polymorphism of KCNJ10. METHODS: Using cultured astrocytes and hippocampal brain slices together with whole-cell patch-clamp, we determined the electrophysiologic properties, particularly K(+) conductances, of B6 and D2 mouse astrocytes. Using a colorimetric assay, we determined glutamate clearance capacity by B6 and D2 astrocytes. RESULTS: Barium-sensitive Kir currents elicited from B6 astrocytes are substantially larger than those elicited from D2 astrocytes. In addition, potassium and glutamate buffering by D2 cortical astrocytes is impaired, relative to buffering by B6 astrocytes. DISCUSSION: In summary, the activity of Kir4.1 channels differs between seizure-susceptible D2 and seizure-resistant B6 mice. Reduced activity of Kir4.1 channels in astrocytes of D2 mice is associated with deficits in potassium and glutamate buffering. These deficits may, in part, explain the relatively low seizure threshold of D2 mice.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio/fisiologia , Potássio/metabolismo , Convulsões/genética , Convulsões/metabolismo , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/fisiologia , Animais , Astrócitos/fisiologia , Bário/farmacologia , Canalopatias/genética , Canalopatias/metabolismo , Canalopatias/fisiopatologia , Predisposição Genética para Doença/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Técnicas de Patch-Clamp , Polimorfismo de Nucleotídeo Único/genética , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Convulsões/fisiopatologia
16.
Front Neurol ; 11: 520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714261

RESUMO

Seizure patterns observed in patients with epilepsy suggest that circadian rhythms and sleep/wake mechanisms play some role in the disease. This review addresses key topics in the relationship between circadian rhythms and seizures in epilepsy. We present basic information on circadian biology, but focus on research studying the influence of both the time of day and the sleep/wake cycle as independent but related factors on the expression of seizures in epilepsy. We review studies investigating how seizures and epilepsy disrupt expression of core clock genes, and how disruption of clock mechanisms impacts seizures and the development of epilepsy. We focus on the overlap between mechanisms of circadian-associated changes in SCN neuronal excitability and mechanisms of epileptogenesis as a means of identifying key pathways and molecules that could represent new targets or strategies for epilepsy therapy. Finally, we review the concept of chronotherapy and provide a perspective regarding its application to patients with epilepsy based on their individual characteristics (i.e., being a "morning person" or a "night owl"). We conclude that better understanding of the relationship between circadian rhythms, neuronal excitability, and seizures will allow both the identification of new therapeutic targets for treating epilepsy as well as more effective treatment regimens using currently available pharmacological and non-pharmacological strategies.

17.
Eur J Pharmacol ; 587(1-3): 124-8, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18495107

RESUMO

Glycyrrhizae radix (licorice) comprises a variety of flavonoids as major constituents including isoliquiritigenin, liquiritin, liquiritigenin, and glycyrrihizin. It has shown various biological activities such as anti-inflammatory, anti-carcinogenic and antihistamic. As very little is known in regard to drug addiction, we carried out a study on the effect of G. radix and its active component, isoliquiritigenin, on acute cocaine-induced extracellular dopamine release in moving rats. Male Sprague-Dawley rats were orally administered with methanolic extracts of G. radix or isoliquiritigenin 1 h prior to an injection of cocaine (20 mg/kg, intraperitoneal (i.p.)). Extracellular dopamine was measured by in vivo microdialysis. Extract of G. radix and isoliquiritigenin inhibited cocaine-induced extracellular dopamine level in the nucleus accumbens by dose-dependent manner. Inhibition of dopamine release by isoliquiritigenin resulted in attenuation of the expression of c-Fos, an immediately early gene induced by cocaine. Effect of isoliquiritigenin was completely prevented by a GABA(B) receptor antagonist. Thus, these results showed that G. radix and isoliquiritigenin inhibit cocaine-induced dopamine release by modulating GABA(B) receptor, suggesting that isoliquiritigenin might be effective in blocking the reinforcing effects of cocaine.


Assuntos
Chalconas/farmacologia , Cocaína/antagonistas & inibidores , Cocaína/farmacologia , Inibidores da Captação de Dopamina/antagonistas & inibidores , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Inibidores Enzimáticos/farmacologia , Espaço Extracelular/metabolismo , Receptores de GABA-B/metabolismo , Animais , Chalconas/antagonistas & inibidores , Relação Dose-Resposta a Droga , Espaço Extracelular/efeitos dos fármacos , Glycyrrhiza/química , Masculino , Microdiálise , Morfolinas/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-B/efeitos dos fármacos
18.
Neurosci Lett ; 440(3): 280-3, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18572320

RESUMO

Dopaminergic brain systems have been implicated to play a major role in drug reward, thus making genes involved in these circuits plausible candidates for susceptibility to substance use disorders. The cocaine- and amphetamine-regulated transcript peptide (CARTPT) is involved in reward and feeding behavior and has functional characteristics of an endogenous psychostimulant. In this study we tested the hypothesis that variation in the CARTPT gene increases susceptibility to cocaine dependence in individuals of African descent. Genotypes of three HapMap tagging SNPs (rs6894758; rs11575893; rs17358300) across the CARTPT gene region were obtained in cocaine dependent individuals (n=348) and normal controls (n=256). All subjects were of African descent. There were no significant differences in allele, genotype or haplotype frequencies between cases and controls for any of the tested SNPs. Our results do not support an association of the CARTPT gene with cocaine dependence; however, additional studies using larger samples, comprehensive SNP coverage, and different populations are necessary to conclusively rule out CARTPT as a contributing factor in the etiology of cocaine dependence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Negro ou Afro-Americano , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
19.
Neuropsychobiology ; 57(1-2): 55-60, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18451639

RESUMO

Linkage studies have suggested a susceptibility locus for schizophrenia (SZ) exists on chromosome 8p21-22. The vesicular monoamine transporter 1 gene (VMAT1), also known as SLC18A1, maps to this SZ susceptibility locus. Vesicular monoamine transporters are involved in the presynaptic vesicular packaging of monoamine neurotransmitters, which have been postulated to play a role in the etiology of SZ. Variations in the VMAT1 gene might affect transporter function and/or expression, and might be involved in the etiology of SZ. Genotypes of 62 patients with SZ and 188 control subjects were obtained for 4 missense single nucleotide polymorphisms (Thr4Pro, Thr98Ser, Thr136Ile, Val392Leu) and 2 noncoding single nucleotide polymorphisms (rs988713, rs2279709). All cases and controls were of European descent. The frequency of the minor allele of the Thr4Pro polymorphism was significantly increased in SZ patients when compared to controls (p = 0.0140; d.f. = 1; OR = 1.69; 95% CI = 1.11-2.57). Assuming a recessive mode of inheritance, the frequency of homozygote 4Pro carriers was significantly increased in the SZ patients when compared to controls (24 vs. 8%, respectively; p = 0.0006; d.f. = 1; OR = 3.74; 95% CI = 1.703-8.21). Haplotype analysis showed nominal significance for an individual risk haplotype (p = 0.013); however, after permutation correction, the global p value did not attain a statistically significant level (p = 0.07). Results suggest that variations in the VMAT1 gene may confer susceptibility to SZ in patients of European descent. Further studies are necessary to confirm this effect, and to elucidate the role of VMAT1 in central nervous system physiology and possible involvement in the genetic origins of SZ.


Assuntos
Cromossomos Humanos Par 8/genética , Polimorfismo Genético/genética , Esquizofrenia/genética , Proteínas Vesiculares de Transporte de Monoamina/genética , Adulto , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Neuregulina-1
20.
Physiol Genomics ; 31(3): 458-62, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17698926

RESUMO

Multiple quantitative trait locus (QTL) mapping studies designed to localize seizure susceptibility genes in C57BL/6 (B6, seizure resistant) and DBA/2 (D2, seizure susceptible) mice have detected a significant effect originating from midchromosome 5. To confirm the presence and refine the position of the chromosome 5 QTL for maximal electroshock seizure threshold (MEST), reciprocal congenic strains between B6 and D2 mice were created by a DNA marker-assisted backcross breeding strategy and studied with respect to changes in MEST. A genomic interval delimited by marker D5Mit75 (proximal to the acromere) and D5Mit403 (distal to the acromere) was introgressed for 10 generations. A set of chromosome 5 congenic strains produced by an independent laboratory was also studied. Comparison of MEST between congenic and control (parental genetic background) mice indicates that genes influencing this trait were captured in all strains. Thus, mice from strains having D2 alleles from chromosome 5 on a B6 genetic background exhibit significantly lower MEST compared with control littermates, whereas congenic mice harboring B6 chromosome 5 alleles on a D2 genetic background exhibit significantly higher MEST compared with control littermates. Combining data from all congenic strains, we conclude that the gene(s) underlying the chromosome 5 QTL for MEST resides in the interval between D5Mit108 (26 cM) and D5Mit278 (61 cM). Generation of interval-specific congenic strains from the primary congenic strains described here may be used to achieve high-resolution mapping of the chromosome 5 gene(s) that contributes to the large difference in seizure susceptibility between B6 and D2 mice.


Assuntos
Mapeamento Cromossômico , Predisposição Genética para Doença , Locos de Características Quantitativas , Convulsões/genética , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA