Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 17(11)2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27854352

RESUMO

The blend of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) has recently been considered promising for vascular tissue engineering. However, it was shown that PHBV/PCL grafts require biofunctionalization to achieve high primary patency rate. Here we compared immobilization of arginine-glycine-aspartic acid (RGD)-containing peptides and the incorporation of vascular endothelial growth factor (VEGF) as two widely established biofunctionalization approaches. Electrospun PHBV/PCL small-diameter grafts with either RGD peptides or VEGF, as well as unmodified grafts were implanted into rat abdominal aortas for 1, 3, 6, and 12 months following histological and immunofluorescence assessment. We detected CD31⁺/CD34⁺/vWF⁺ cells 1 and 3 months postimplantation at the luminal surface of PHBV/PCL/RGD and PHBV/PCL/VEGF, but not in unmodified grafts, with the further observation of CD31⁺CD34-vWF⁺ phenotype. These cells were considered as endothelial and produced a collagen-positive layer resembling a basement membrane. Detection of CD31⁺/CD34⁺ cells at the early stages with subsequent loss of CD34 indicated cell adhesion from the bloodstream. Therefore, either conjugation with RGD peptides or the incorporation of VEGF promoted the formation of a functional endothelial cell layer. Furthermore, both modifications increased primary patency rate three-fold. In conclusion, both of these biofunctionalization approaches can be considered as equally efficient for the modification of tissue-engineered vascular grafts.


Assuntos
Prótese Vascular , Materiais Revestidos Biocompatíveis/química , Proteínas Imobilizadas/química , Oligopeptídeos/química , Fator A de Crescimento do Endotélio Vascular/química , Animais , Antígenos CD34/análise , Implante de Prótese Vascular , Adesão Celular , Células Endoteliais/citologia , Masculino , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Ratos Wistar , Engenharia Tecidual
2.
Sci Rep ; 6: 27255, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251104

RESUMO

Calcium phosphate bions (CPB) are biomimetic mineralo-organic nanoparticles which represent a physiological mechanism regulating the function, transport and disposal of calcium and phosphorus in the human body. We hypothesised that CPB may be pathogenic entities and even a cause of cardiovascular calcification. Here we revealed that CPB isolated from calcified atherosclerotic plaques and artificially synthesised CPB are morphologically and chemically indistinguishable entities. Their formation is accelerated along with the increase in calcium salts-phosphates/serum concentration ratio. Experiments in vitro and in vivo showed that pathogenic effects of CPB are defined by apoptosis-mediated endothelial toxicity but not by direct tissue calcification or functional changes in anti-calcification proteins. Since the factors underlying the formation of CPB and their pathogenic mechanism closely resemble those responsible for atherosclerosis development, further research in this direction may help us to uncover triggers of this disease.


Assuntos
Materiais Biomiméticos/farmacologia , Fosfatos de Cálcio/toxicidade , Células Endoteliais/citologia , Placa Aterosclerótica/química , Apoptose , Calcificação Fisiológica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Humanos , Fosfatos/metabolismo , Sais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA