Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anim Biotechnol ; 34(8): 3946-3961, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37587839

RESUMO

Muscle development is an important priority of pig breeding programs. There is a considerable variation in muscularity between the breeds, but the regulation mechanisms of genes underlying myogenesis are still unclear. Transcriptome data from two breeds of pigs with divergent muscularity (Mali and Hampshire) were integrated with histology, immunofluorescence and meat yield to identify differences in myogenesis during the early growth phase. The muscle transcriptomics analysis revealed 17,721 common, 1413 and 1115 unique transcripts to Hampshire and Mali, respectively. This study identified 908 differentially expressed genes (p < 0.05; log2FC > ±1) in the muscle samples, of which 550 were upregulated and 358 were downregulated in Hampshire pigs, indicating differences in physiological process related to muscle function and development. Expression of genes related to myoblast fusion (MYMK), skeletal muscle satellite cell proliferation (ANGPT1, CDON) and growth factors (HGF, IGF1, IGF2) were higher in Hampshire than Mali, even though transcript levels of several other myogenesis-related genes (MYF6, MYOG, MSTN) were similar. The number of fibers per fascicle and the expression of myogenic marker proteins (MYOD1, MYOG and PAX7) were more in Hampshire as compared to Mali breed of pig, supporting results of transcriptome studies. The results suggest that differences in muscularity between breeds could be related to the regulation of myoblast fusion and myogenic activities. The present study will help to identify genes that could be explored for their utility in the selection of animals with different muscularities.


Assuntos
Sus scrofa , Transcriptoma , Suínos/genética , Animais , Transcriptoma/genética , Sus scrofa/genética , Músculo Esquelético/metabolismo , Mali , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética
2.
Basic Clin Neurosci ; 13(5): 647-660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37313027

RESUMO

Introduction: The functions of the endoplasmic reticulum (ER) are important, particularly in the proteins' synthesis, folding, modification, and transport. Based on traditional medicine and our previous studies on Zanthoxylum alatum in lipopolysaccharide-induced depressive behavior and scopolamine-induced impaired memory, the present study explored the role of hydroalcoholic extract of Z. alatum (ZAHA) seeds in reducing the ER stress in mice. Methods: The mice were restrained for 28 days in polystyrene tubes. ZAHA (100 and 200 mg/kg, PO) and imipramine (10 mg/kg, IP) were administered daily, 45 min before restraint from day 22 to 28. The mice were assessed by the forced swim test. Also, the antioxidant enzyme levels of Superoxide Dismutase (SOD), reduced glutathione (GSH), and lipid peroxidation (LPO) were measured in the hippocampus of mice. The expression of 78 kDa glucose-regulated protein (GRP78), 94 kDa Glucose-Regulated Protein (GRP94), and C/EBPhomologous protein (CHOP) genes was assessed by real-time PCR to explore the molecular mechanism. Results: ZAHA (100 and 200 mg/kg, PO, and imipramine, IP) counteracted the stress by significantly reducing the immobility time in the force swimming test, receding oxidative stress and lipid peroxidation. The antioxidant enzyme (SOD and GSH) levels were elevated in the restraint stress group. Down-regulation of genes (GRP78, GRP94, and CHOP) compared to the chronic restraint stress group indicated stress modulating properties of the seeds in ER stress. Hesperidin, magnoflorine, melicopine, and sesamin, isolated from the active extract, were hypothesized to exert the activity. Conclusion: It can be concluded that Z. alatum reverted chronic restraint stress through its antioxidant properties and down-regulation of genes involved in ER stress.

3.
Indian J Pharmacol ; 54(2): 102-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546461

RESUMO

OBJECTIVE: Conyza bonariensis is an ornamental medicinal weed. This experiment was planned to explore the outcome of petroleum ether extract of C. bonariensis (PECB) leaves on scopolamine-induced amnesia in rats. MATERIALS AND METHODS: For impairing memory, 0.4 mg/kg (i. p.) of scopolamine was given. Fifty to 200 mg/kg of PECB was fed orally to rats and 3 mg/kg (i. p.) of tacrine was given as a standard drug. Anti-amnesic property was evaluated in Barnes maze using ANY-maze software. Following a behavioral study, acetylcholinesterase (AChE), ß-amyloid1-41, antioxidant enzymes, and cytokine levels were measured. Furthermore, reverse transcription-polymerase chain reaction was done for expression of the marker genes such as AChE, Nrf2, NF-κB, PP2A, and HO-1, whereas BDNF, TrkB, caspase-3, and Bax were measured by Western blotting. RESULTS: PECB and tacrine significantly improved memory dysfunction by decreasing escape latency in Barnes maze. At the highest dose, treatment with PECB altered the scopolamine-induced hyperactivation of AChE and ß-amyloid1-41 activity. PECB elevated the levels of superoxide dismutase, glutathione, and catalase and decreased lipid peroxidation and nitric oxide dose dependently. PECB attenuated scopolamine-induced increase of tumor necrosis factor-α and interleukin (IL)-1ß concentrations in the hippocampus with reversed diminished IL-10 level toward normal in the brain. Nrf2, HO-1, PP2A, BDNF, and TrkB were significantly upregulated with downregulation of AChE, NF-κB, Tau, Bax, and caspase-3. Different components such as beta-amyrin and alpha-amyrin were isolated from leaves of the plant. CONCLUSION: The results indicated that PECB might be a potential curative drug for the treatment of cognitive impairment.


Assuntos
Conyza , Fator 2 Relacionado a NF-E2 , Acetilcolinesterase/metabolismo , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Conyza/metabolismo , Aprendizagem em Labirinto , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Extratos Vegetais/efeitos adversos , Ratos , Escopolamina , Tacrina/efeitos adversos , Proteína X Associada a bcl-2/metabolismo
4.
J Ayurveda Integr Med ; 11(4): 464-470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30635249

RESUMO

BACKGROUND: Entada phaseoloides is a well-known medicinal plant traditionally used in Ayurvedic medicine for centuries. OBJECTIVE: To evaluate the anti-stress activity of seeds of E. phaseoloides in endoplasmic reticulum stress during chronic restrain stress in mice, based on our preliminary screening. MATERIALS AND METHODS: Mice (n = 6/group) were restrained daily for 6 h in 50 ml polystyrene tubes for 28 days. Methanolic extract of E. phaseoloides (MEEP) (100 and 200 mg/kg, p.o.) and standard drug, imipramine (10 mg/kg i.p.) were administered daily 45 min prior to restrain from day 22-28. Then, forced swim test (FST) was performed to assess despair behavior. Lipid peroxidation (LPO) and antioxidant enzymes Reduced glutathione (GSH), Superoxide dismutase (SOD) were measured in the hippocampus of mice. 78 kDa Glucose-regulated Protein, 94 kDa Glucose-regulated Protein, C/EBP homologous protein, Caspase-12 expression were quantified by Real Time PCR. RESULTS: MEEP significantly reduced the immobility time in FST (P < 0.001). Significant reduction of LPO (P < 0.05) level and restored antioxidant enzymes viz. GSH (P < 0.001) and SOD towards vehicle control group were observed. Down-regulation of genes GRP 78, GRP 94 (P < 0.001), CHOP and Caspase-12 (P < 0.001) as compared to the chronic restrain stress group was evident, which were upregulated following treatment. Isolation of the active components of the seeds revealed the presence of Oleic acid (1), Entadamide A (2), Entadamide A-beta-d-glucopyranoside (3) and 1-O-protocatechuoyl-ß-d-glucose. CONCLUSION: MEEP altered endoplasmic reticulum stress in chronic restrain stressed mice; however, as an antidepressant it showed a weaker response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA