Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Cell ; 83(20): 3669-3678.e7, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37816354

RESUMO

UV irradiation induces "bulky" DNA photodimers such as (6-4)-photoproducts and cyclobutane pyrimidine dimers that are removed by nucleotide excision repair, a complex process defective in the sunlight-sensitive and cancer-prone disease xeroderma pigmentosum. Some bacteria and lower eukaryotes can also repair photodimers by enzymatically simpler mechanisms, but such pathways have not been reported in normal human cells. Here, we have identified such a mechanism. We show that normal human cells can employ a DNA base excision repair process involving NTH1, APE1, PARP1, XRCC1, and FEN1 to rapidly remove a subset of photodimers at early times following UVC irradiation. Loss of these proteins slows the early rate of repair of photodimers in normal cells, ablates their residual repair in xeroderma pigmentosum cells, and increases UVC sensitivity ∼2-fold. These data reveal that human cells can excise photodimers using a long-patch base excision repair process that functions additively but independently of nucleotide excision repair.


Assuntos
Xeroderma Pigmentoso , Humanos , Xeroderma Pigmentoso/genética , Reparo do DNA/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Dano ao DNA/genética , DNA/genética , Raios Ultravioleta , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
2.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360994

RESUMO

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Reparo do DNA , Dano ao DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Endonucleases Flap/uso terapêutico , Exodesoxirribonucleases/genética , Enzimas Reparadoras do DNA/genética
3.
EMBO J ; 42(18): e113190, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37492888

RESUMO

DNA single-strand breaks (SSBs) disrupt DNA replication and induce chromosome breakage. However, whether SSBs induce chromosome breakage when present behind replication forks or ahead of replication forks is unclear. To address this question, we exploited an exquisite sensitivity of SSB repair-defective human cells lacking PARP activity or XRCC1 to the thymidine analogue 5-chloro-2'-deoxyuridine (CldU). We show that incubation with CldU in these cells results in chromosome breakage, sister chromatid exchange, and cytotoxicity by a mechanism that depends on the S phase activity of uracil DNA glycosylase (UNG). Importantly, we show that CldU incorporation in one cell cycle is cytotoxic only during the following cell cycle, when it is present in template DNA. In agreement with this, while UNG induces SSBs both in nascent strands behind replication forks and in template strands ahead of replication forks, only the latter trigger fork collapse and chromosome breakage. Finally, we show that BRCA-defective cells are hypersensitive to CldU, either alone and/or in combination with PARP inhibitor, suggesting that CldU may have clinical utility.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Quebra Cromossômica , Reparo do DNA , Replicação do DNA , DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
4.
EMBO J ; 38(20): e101443, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31424118

RESUMO

Cyclins are central engines of cell cycle progression in conjunction with cyclin-dependent kinases (CDKs). Among the different cyclins controlling cell cycle progression, cyclin F does not partner with a CDK, but instead forms via its F-box domain an SCF (Skp1-Cul1-F-box)-type E3 ubiquitin ligase module. Although various substrates of cyclin F have been identified, the vulnerabilities of cells lacking cyclin F are not known. Thus, we assessed viability of cells lacking cyclin F upon challenging them with more than 180 different kinase inhibitors. The screen revealed a striking synthetic lethality between Chk1 inhibition and cyclin F loss. Chk1 inhibition in cells lacking cyclin F leads to DNA replication catastrophe. Replication catastrophe depends on accumulation of the transcription factor E2F1 in cyclin F-depleted cells. We find that SCF-cyclin F controls E2F1 ubiquitylation and degradation during the G2/M phase of the cell cycle and upon challenging cells with Chk1 inhibitors. Thus, Cyclin F restricts E2F1 activity during the cell cycle and upon checkpoint inhibition to prevent DNA replication stress. Our findings pave the way for patient selection in the clinical use of checkpoint inhibitors.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Ciclinas/metabolismo , Fator de Transcrição E2F1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Proteínas Ligases SKP Culina F-Box/metabolismo , Mutações Sintéticas Letais , Ciclo Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/genética , Ciclinas/genética , Replicação do DNA , Fator de Transcrição E2F1/genética , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitinação
5.
Mol Cell ; 59(4): 603-14, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26212458

RESUMO

Ataxia telangiectasia-mutated and Rad3-related (ATR) protein kinase, a master regulator of DNA-damage response, is activated by RPA-coated single-stranded DNA (ssDNA) generated at stalled replication forks or DNA double-strand breaks (DSBs). Here, we identify the mismatch-binding protein MutSß, a heterodimer of MSH2 and MSH3, as a key player in this process. MSH2 and MSH3 form a complex with ATR and its regulatory partner ATRIP, and their depletion compromises the formation of ATRIP foci and phosphorylation of ATR substrates in cells responding to replication-associated DSBs. Purified MutSß binds to hairpin loop structures that persist in RPA-ssDNA complexes and promotes ATRIP recruitment. Mutations in the mismatch-binding domain of MSH3 abolish the binding of MutSß to DNA hairpin loops and its ability to promote ATR activation by ssDNA. These results suggest that hairpin loops might form in ssDNA generated at sites of DNA damage and trigger ATR activation in a process mediated by MutSß.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/fisiologia , Proteína 2 Homóloga a MutS/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Células HEK293 , Recombinação Homóloga , Humanos , Proteína 2 Homóloga a MutS/química , Proteína 3 Homóloga a MutS , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
6.
EMBO J ; 36(14): 2161-2176, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28607002

RESUMO

After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM-/ATR-dependent signaling that inhibits mitosis-promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR-dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET-based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re-activation. These phosphorylations are rapidly counteracted by the chromatin-bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Proteína Fosfatase 2C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Biológicos , Modelos Teóricos , Fosforilação , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido , Quinase 1 Polo-Like
7.
Int J Cancer ; 145(7): 1782-1797, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050813

RESUMO

Germline mutations in checkpoint kinase 2 (CHEK2), a multiple cancer-predisposing gene, increase breast cancer (BC) risk; however, risk estimates differ substantially in published studies. We analyzed germline CHEK2 variants in 1,928 high-risk Czech breast/ovarian cancer (BC/OC) patients and 3,360 population-matched controls (PMCs). For a functional classification of VUS, we developed a complementation assay in human nontransformed RPE1-CHEK2-knockout cells quantifying CHK2-specific phosphorylation of endogenous protein KAP1. We identified 10 truncations in 46 (2.39%) patients and in 11 (0.33%) PMC (p = 1.1 × 10-14 ). Two types of large intragenic rearrangements (LGR) were found in 20/46 mutation carriers. Truncations significantly increased unilateral BC risk (OR = 7.94; 95%CI 3.90-17.47; p = 1.1 × 10-14 ) and were more frequent in patients with bilateral BC (4/149; 2.68%; p = 0.003), double primary BC/OC (3/79; 3.80%; p = 0.004), male BC (3/48; 6.25%; p = 8.6 × 10-4 ), but not with OC (3/354; 0.85%; p = 0.14). Additionally, we found 26 missense VUS in 88 (4.56%) patients and 131 (3.90%) PMC (p = 0.22). Using our functional assay, 11 variants identified in 15 (0.78%) patients and 6 (0.18%) PMC were scored deleterious (p = 0.002). Frequencies of functionally intermediate and neutral variants did not differ between patients and PMC. Functionally deleterious CHEK2 missense variants significantly increased BC risk (OR = 3.90; 95%CI 1.24-13.35; p = 0.009) and marginally OC risk (OR = 4.77; 95%CI 0.77-22.47; p = 0.047); however, carriers low frequency will require evaluation in larger studies. Our study highlights importance of LGR detection for CHEK2 analysis, careful consideration of ethnicity in both cases and controls for risk estimates, and demonstrates promising potential of newly developed human nontransformed cell line assay for functional CHEK2 VUS classification.


Assuntos
Neoplasias da Mama Masculina/genética , Neoplasias da Mama/genética , Quinase do Ponto de Checagem 2/genética , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Linhagem Celular , República Tcheca , Feminino , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Deleção de Sequência , Adulto Jovem
8.
Nucleic Acids Res ; 42(4): 2380-90, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24319145

RESUMO

Most mitotic homologous recombination (HR) events proceed via a synthesis-dependent strand annealing mechanism to avoid crossing over, which may give rise to chromosomal rearrangements and loss of heterozygosity. The molecular mechanisms controlling HR sub-pathway choice are poorly understood. Here, we show that human RECQ5, a DNA helicase that can disrupt RAD51 nucleoprotein filaments, promotes formation of non-crossover products during DNA double-strand break-induced HR and counteracts the inhibitory effect of RAD51 on RAD52-mediated DNA annealing in vitro and in vivo. Moreover, we demonstrate that RECQ5 deficiency is associated with an increased occupancy of RAD51 at a double-strand break site, and it also causes an elevation of sister chromatid exchanges on inactivation of the Holliday junction dissolution pathway or on induction of a high load of DNA damage in the cell. Collectively, our findings suggest that RECQ5 acts during the post-synaptic phase of synthesis-dependent strand annealing to prevent formation of aberrant RAD51 filaments on the extended invading strand, thus limiting its channeling into potentially hazardous crossover pathway of HR.


Assuntos
Quebras de DNA de Cadeia Dupla , RecQ Helicases/metabolismo , Reparo de DNA por Recombinação , Linhagem Celular , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Humanos , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Troca de Cromátide Irmã
9.
J Biol Chem ; 289(39): 27314-27326, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25122754

RESUMO

The 5'-3' resection of DNA ends is a prerequisite for the repair of DNA double strand breaks by homologous recombination, microhomology-mediated end joining, and single strand annealing. Recent studies in yeast have shown that, following initial DNA end processing by the Mre11-Rad50-Xrs2 complex and Sae2, the extension of resection tracts is mediated either by exonuclease 1 or by combined activities of the RecQ family DNA helicase Sgs1 and the helicase/endonuclease Dna2. Although human DNA2 has been shown to cooperate with the BLM helicase to catalyze the resection of DNA ends, it remains a matter of debate whether another human RecQ helicase, WRN, can substitute for BLM in DNA2-catalyzed resection. Here we present evidence that WRN and BLM act epistatically with DNA2 to promote the long-range resection of double strand break ends in human cells. Our biochemical experiments show that WRN and DNA2 interact physically and coordinate their enzymatic activities to mediate 5'-3' DNA end resection in a reaction dependent on RPA. In addition, we present in vitro and in vivo data suggesting that BLM promotes DNA end resection as part of the BLM-TOPOIIIα-RMI1-RMI2 complex. Our study provides new mechanistic insights into the process of DNA end resection in mammalian cells.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , DNA/metabolismo , Epistasia Genética/fisiologia , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Hidrolases Anidrido Ácido , DNA/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Proteína Homóloga a MRE11 , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , RecQ Helicases/genética , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Helicase da Síndrome de Werner
10.
Neuro Endocrinol Lett ; 36 Suppl 1: 38-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26757124

RESUMO

OBJECTIVES: Cytochromes P450 (CYP) are monooxygenases, which metabolize mostly hydrophobic endogenous and exogenous compounds. CYPs without any clear connection to metabolism are called "orphans". Interestingly, these "orphan" CYPs are over-expressed in tumor tissues. Thus, the main aim of the paper is the development of antibodies for immunodetection of these CYPs as potential malignancy markers. METHODS: Unique sequences of CYP2S1 and 2W1 were selected and peptides synthesized. Chickens were immunized with peptides bound to hemocyanin (KLH). The antibodies were isolated from egg yolks and their reactivity was tested by ELISA. Antibodies were further affinity purified on immobilized peptides. Western blots containing CYP2S1 and 2W1 standards were developed with purified antibodies. RESULTS: Using unique peptide immunogens of CYP2S1 and 2W1 the antibodies were developed. As judged from ELISA all chickens produced specific antibodies against the respective peptides. Both affinity purified antibodies against CYP2S1 peptide recognized the CYP2S1 standard on Western blots, but only one of four anti-peptide antibodies against CYP2W1 reacted with CYP2W1 standard. The antibodies were used for the detection of CYPs in cancer cell lines and human tissues samples. Although both CYPs were frequently co-expressed in cancer cells, CYP2S1 was solely induced in the cell line BxPC3, while CYP2W1 was predominantly present in cell lines MCF7 and HeLa. Our data show that anti-peptide antibodies are an indispensable tool for detection of homologous CYPs. CONCLUSIONS: The anti-peptide antibodies successfully recognized CYP2S1 and 2W1 in the cancer cell lines and tissue samples.


Assuntos
Anticorpos/imunologia , Formação de Anticorpos , Sistema Enzimático do Citocromo P-450/imunologia , Imunoglobulinas/imunologia , Técnicas Imunológicas/métodos , Neoplasias/enzimologia , Animais , Western Blotting , Linhagem Celular Tumoral , Galinhas , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450 , Ovos , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Humanos , Peptídeos
11.
Nucleic Acids Res ; 40(17): 8449-59, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22753033

RESUMO

Reactive oxygen species constantly generated as by-products of cellular metabolism readily attack genomic DNA creating mutagenic lesions such as 7,8-dihydro-8-oxo-guanine (8-oxo-G) that promote aging. 8-oxo-G:A mispairs arising during DNA replication are eliminated by base excision repair initiated by the MutY DNA glycosylase homologue (MUTYH). Here, by using formaldehyde crosslinking in mammalian cell extracts, we demonstrate that the WRN helicase/exonuclease defective in the premature aging disorder Werner syndrome (WS) is recruited to DNA duplex containing an 8-oxo-G:A mispair in a manner dependent on DNA polymerase λ (Polλ) that catalyzes accurate DNA synthesis over 8-oxo-G. Similarly, by immunofluorescence, we show that Polλ is required for accumulation of WRN at sites of 8-oxo-G lesions in human cells. Moreover, we show that nuclear focus formation of WRN and Polλ induced by oxidative stress is dependent on ongoing DNA replication and on the presence of MUTYH. Cell viability assays reveal that depletion of MUTYH suppresses the hypersensitivity of cells lacking WRN and/or Polλ to oxidative stress. Biochemical studies demonstrate that WRN binds to the catalytic domain of Polλ and specifically stimulates DNA gap filling by Polλ over 8-oxo-G followed by strand displacement synthesis. Our results suggest that WRN promotes long-patch DNA repair synthesis by Polλ during MUTYH-initiated repair of 8-oxo-G:A mispairs.


Assuntos
Pareamento Incorreto de Bases , DNA Glicosilases/metabolismo , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Estresse Oxidativo , RecQ Helicases/metabolismo , Animais , Linhagem Celular , DNA/metabolismo , Dano ao DNA , DNA Polimerase beta/metabolismo , Replicação do DNA , Exodesoxirribonucleases/fisiologia , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Camundongos , RecQ Helicases/fisiologia , Fase S/genética , Helicase da Síndrome de Werner
12.
Nat Struct Mol Biol ; 29(4): 329-338, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332322

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) is implicated in the detection and processing of unligated Okazaki fragments and other DNA replication intermediates, highlighting such structures as potential sources of genome breakage induced by PARP inhibition. Here, we show that PARP1 activity is greatly elevated in chicken and human S phase cells in which FEN1 nuclease is genetically deleted and is highest behind DNA replication forks. PARP inhibitor reduces the integrity of nascent DNA strands in both wild-type chicken and human cells during DNA replication, and does so in FEN1-/- cells to an even greater extent that can be detected as postreplicative single-strand nicks or gaps. Collectively, these data show that PARP inhibitors impede the maturation of nascent DNA strands during DNA replication, and implicate unligated Okazaki fragments and other nascent strand discontinuities in the cytotoxicity of these compounds.


Assuntos
Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , DNA/genética , Dano ao DNA , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
13.
FEBS J ; 288(20): 6035-6051, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33982878

RESUMO

Upon exposure to genotoxic stress, cells activate DNA damage response (DDR) that coordinates DNA repair with a temporal arrest in the cell cycle progression. DDR is triggered by activation of ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related protein kinases that phosphorylate multiple targets including tumor suppressor protein tumor suppressor p53 (p53). In addition, DNA damage can activate parallel stress response pathways [such as mitogen-activated protein kinase p38 alpha (p38)/MAPK-activated protein kinase 2 (MK2) kinases] contributing to establishing the cell cycle arrest. Wild-type p53-induced phosphatase 1 (WIP1) controls timely inactivation of DDR and is needed for recovery from the G2 checkpoint by counteracting the function of p53. Here, we developed a simple in vitro assay for testing WIP1 substrates in nuclear extracts. Whereas we did not detect any activity of WIP1 toward p38/MK2, we confirmed p53 as a substrate of WIP1. Inhibition or inactivation of WIP1 in U2OS cells increased phosphorylation of p53 at S15 and potentiated its acetylation at K382. Further, we identified Deleted in breast cancer gene 1 (DBC1) as a new substrate of WIP1 but surprisingly, depletion of DBC1 did not interfere with the ability of WIP1 to regulate p53 acetylation. Instead, we have found that WIP1 activity suppresses p53-K382 acetylation by inhibiting the interaction between p53 and the acetyltransferase p300. Newly established phosphatase assay allows an easy comparison of WIP1 ability to dephosphorylate various proteins and thus contributes to identification of its physiological substrates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Bioensaio/métodos , Neoplasias Ósseas/patologia , Núcleo Celular/metabolismo , Osteossarcoma/patologia , Proteína Fosfatase 2C/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Núcleo Celular/genética , Dano ao DNA , Reparo do DNA , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 2C/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
14.
Life Sci Alliance ; 4(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33402344

RESUMO

Cyclin A2 is a key regulator of the cell cycle, implicated both in DNA replication and mitotic entry. Cyclin A2 participates in feedback loops that activate mitotic kinases in G2 phase, but why active Cyclin A2-CDK2 during the S phase does not trigger mitotic kinase activation remains unclear. Here, we describe a change in localisation of Cyclin A2 from being only nuclear to both nuclear and cytoplasmic at the S/G2 border. We find that Cyclin A2-CDK2 can activate the mitotic kinase PLK1 through phosphorylation of Bora, and that only cytoplasmic Cyclin A2 interacts with Bora and PLK1. Expression of predominately cytoplasmic Cyclin A2 or phospho-mimicking PLK1 T210D can partially rescue a G2 arrest caused by Cyclin A2 depletion. Cytoplasmic presence of Cyclin A2 is restricted by p21, in particular after DNA damage. Cyclin A2 chromatin association during DNA replication and additional mechanisms contribute to Cyclin A2 localisation change in the G2 phase. We find no evidence that such mechanisms involve G2 feedback loops and suggest that cytoplasmic appearance of Cyclin A2 at the S/G2 transition functions as a trigger for mitotic kinase activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclina A2/metabolismo , Citoplasma/metabolismo , Fase G2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fase S/genética , Transdução de Sinais/genética , Proteína Quinase CDC2/deficiência , Proteína Quinase CDC2/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Ciclina A2/genética , Quinase 2 Dependente de Ciclina/deficiência , Quinase 2 Dependente de Ciclina/genética , Dano ao DNA/genética , Ativação Enzimática/genética , Células HeLa , Humanos , Mitose/genética , Fosforilação/genética , Ligação Proteica , Transfecção , Quinase 1 Polo-Like
15.
Cells ; 8(10)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31619012

RESUMO

Genotoxic stress triggers a combined action of DNA repair and cell cycle checkpoint pathways. Protein phosphatase 2C delta (referred to as WIP1) is involved in timely inactivation of DNA damage response by suppressing function of p53 and other targets at chromatin. Here we show that WIP1 promotes DNA repair through homologous recombination. Loss or inhibition of WIP1 delayed disappearance of the ionizing radiation-induced 53BP1 foci in S/G2 cells and promoted cell death. We identify breast cancer associated protein 1 (BRCA1) as interactor and substrate of WIP1 and demonstrate that WIP1 activity is needed for correct dynamics of BRCA1 recruitment to chromatin flanking the DNA lesion. In addition, WIP1 dephosphorylates 53BP1 at Threonine 543 that was previously implicated in mediating interaction with RIF1. Finally, we report that inhibition of WIP1 allowed accumulation of DNA damage in S/G2 cells and increased sensitivity of cancer cells to a poly-(ADP-ribose) polymerase inhibitor olaparib. We propose that inhibition of WIP1 may increase sensitivity of BRCA1-proficient cancer cells to olaparib.


Assuntos
Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína Fosfatase 2C/antagonistas & inibidores , Proteína Fosfatase 2C/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , Reparo do DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HEK293 , Recombinação Homóloga/genética , Humanos , Proteína Fosfatase 2C/genética , Pontos de Checagem da Fase S do Ciclo Celular , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
16.
DNA Repair (Amst) ; 78: 114-127, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31009828

RESUMO

The bulk of DNA damage caused by ionizing radiation (IR) is generally repaired within hours, yet a subset of DNA lesions may persist even for long periods of time. Such persisting IR-induced foci (pIRIF) co-associate with PML nuclear bodies (PML-NBs) and are among the characteristics of cellular senescence. Here we addressed some fundamental questions concerning the nature and determinants of this co-association, the role of PML-NBs at such sites, and the reason for the persistence of DNA damage in human primary cells. We show that the persistent DNA lesions are devoid of homologous recombination (HR) proteins BRCA1 and Rad51. Our super-resolution microscopy-based analysis showed that PML-NBs are juxtaposed to and partially overlap with the pIRIFs. Notably, depletion of 53BP1 resulted in decreased intersection between PML-NBs and pIRIFs implicating the RNF168-53BP1 pathway in their interaction. To test whether the formation and persistence of IRIFs is PML-dependent and to investigate the role of PML in the context of DNA repair and senescence, we genetically deleted PML in human hTERT-RPE-1 cells. Unexpectedly, upon high-dose IR treatment, cells displayed similar DNA damage signalling, repair dynamics and kinetics of cellular senescence regardless of the presence or absence of PML. In contrast, the PML knock-out cells showed increased sensitivity to low doses of IR and DNA-damaging agents mitomycin C, cisplatin and camptothecin that all cause DNA lesions requiring repair by HR. These results, along with enhanced sensitivity of the PML knock-out cells to DNA-PK and PARP inhibitors implicate PML as a factor contributing to HR-mediated DNA repair.


Assuntos
Dano ao DNA , Reparo do DNA , Corpos de Inclusão Intranuclear/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Técnicas de Inativação de Genes , Humanos , Corpos de Inclusão Intranuclear/efeitos da radiação , Proteína da Leucemia Promielocítica/deficiência , Proteína da Leucemia Promielocítica/genética
17.
Cell Death Dis ; 10(11): 818, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659152

RESUMO

Protein phosphatase magnesium-dependent 1 delta (PPM1D) terminates cell response to genotoxic stress by negatively regulating the tumor suppressor p53 and other targets at chromatin. Mutations in the exon 6 of the PPM1D result in production of a highly stable, C-terminally truncated PPM1D. These gain-of-function PPM1D mutations are present in various human cancers but their role in tumorigenesis remains unresolved. Here we show that truncated PPM1D impairs activation of the cell cycle checkpoints in human non-transformed RPE cells and allows proliferation in the presence of DNA damage. Next, we developed a mouse model by introducing a truncating mutation in the PPM1D locus and tested contribution of the oncogenic PPM1DT allele to colon tumorigenesis. We found that p53 pathway was suppressed in colon stem cells harboring PPM1DT resulting in proliferation advantage under genotoxic stress condition. In addition, truncated PPM1D promoted tumor growth in the colon in Apcmin mice and diminished survival. Moreover, tumor organoids derived from colon of the ApcminPpm1dT/+ mice were less sensitive to 5-fluorouracil when compared to ApcminPpm1d+/+and the sensitivity to 5-fluorouracil was restored by inhibition of PPM1D. Finally, we screened colorectal cancer patients and identified recurrent somatic PPM1D mutations in a fraction of colon adenocarcinomas that are p53 proficient and show defects in mismatch DNA repair. In summary, we provide the first in vivo evidence that truncated PPM1D can promote tumor growth and modulate sensitivity to chemotherapy.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias do Colo/tratamento farmacológico , Proteína Fosfatase 2C/genética , Proteína Supressora de Tumor p53/genética , Animais , Carcinogênese/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Éxons/genética , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mutação/genética
18.
Klin Onkol ; 32(Supplementum2): 36-50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409080

RESUMO

BACKGROUND: Hereditary mutations in the CHEK2 gene (which encodes CHK2 kinase) contribute to a moderately increased risk of breast cancer (BC) and other cancers. Large variations in the frequency of CHEK2 mutations and the occurrence of variants of unknown clinical significance (VUS) complicate estimation of cancer risk in carriers of germline CHEK2 mutations. PATIENTS AND METHODS: We performed mutation analysis of 1,526 high-risk Czech BC patients and 3,360 Czech controls. Functional analysis was performed for identified VUS using a model system based on a human RPE1-CHEK2-KO cell line harboring biallelic inactivation of endogenous CHEK2. RESULTS: The frequency of ten truncating CHEK2 variants differed markedly between BC patients (2.26%) and controls (0.11%; p = 4.1 × 1012). We also found 23 different missense variants in 4.5% patients and in 4.0% of controls. The most common was p.I157T, which was found in patients and controls with the same frequency. Functional analysis identified nine functionally deleterious VUS, another nine functionally neutral VUS, and four intermediate VUS (including p.I157T). We found that carriers of truncating CHEK2 mutations had a high BC risk (OR 8.19; 95% CI 4.11-17.75), and that carriers of functionally deleterious missense variants had a moderate risk (OR 4.06; 95% CI, 1.37-13.39). Carriers of these mutations developed BC at 44.4 and 50.7 years, respectively. Functionally neutral and functionally intermediate missense variants did not increase the BC risk. BC in CHEK2 mutation carriers was frequently ER-positive and of higher grade. Notably, carriers of CHEK2 mutations developed second cancers more frequently than BRCA1/BRCA2/PALB2/p53 or mutation non-carriers. CONCLUSION: Hereditary CHEK2 mutations contribute to the development of hereditary BC. The associated cancer risk in mutation carriers increases with the number of affected individuals in a family. Annual follow-up with breast ultrasound, mammography, or magnetic resonance imaging is recommended for asymptomatic mutation carriers from the age of 40. Surgical prevention and specific follow-up of other tumors should be considered based on family cancer history. The work was supported by grants from the Czech Health Research Council of the Ministry of Health of the Czech Republic NR 15-28830A, 16-29959A, NV19-03-00279, projects of the PROGRES Q28/LF1, GAUK 762216, SVV2019 / 260367, PRIMUS/17/MED/9, UNCE/MED/016, Progress Q26, LQ1604 NPU II and project AVČR Qualitas. The analysis of a set of unselected controls was made possible by the existence and support of the scientific infrastructure of the National Center for Medical Genomics (LM2015091) and its project aimed at creating a reference database of genetic variants of the Czech Republic (CZ.02.1.01/0.0/0.0/16_013/0001634). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 2. 4. 2019 Accepted: 14. 5. 2019.


Assuntos
Neoplasias da Mama/genética , Quinase do Ponto de Checagem 2/genética , Predisposição Genética para Doença , Linhagem Celular , República Tcheca , Feminino , Mutação em Linhagem Germinativa , Humanos , Fatores de Risco
19.
Neuro Endocrinol Lett ; 29(5): 717-21, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18987596

RESUMO

OBJECTIVES: Since flavonoids and other natural compounds exert beneficial effects on human health, their consumption rapidly increases. However, they can modulate the activity of xenobiotic-metabolizing enzymes involved in activation and detoxification of food and environmental carcinogens. Thus, their potential negative effects should be examined. METHODS: The induction effects of selected chemopreventive compounds, administered per orally by gastric gavages to rats, on cytochrome P450 (CYP) 1A and 2B were determined in liver and small intestine using Western blotting analysis and specific metabolic activity assays. RESULTS: Comparing CYPs expression along small intestine, the highest induction was observed in the proximal part near pylorus with rapid decrease towards the distal part. In response to chemopreventive compounds, the marked induction of CYP1A and CYP2B in liver was observed after diallyl sulphide and flavone treatment. In small intestine, beta-naphthoflavone, diallyl sulphide and curcumin induced CYP1A1 and CYP2B1. In both tissues, resveratrol did not significantly affect CYPs expression. The results of Western blotting detection of CYPs correlate well with their specific enzymatic activities. CONCLUSIONS: Presented data indicate ambiguous impact of chemopreventive compounds on cytochromes P450, main xenobiotic-metabolizing enzymes. Thus, the question of safety and unlimited consumption of these compounds arises.


Assuntos
Anticarcinógenos/farmacologia , Sistema Enzimático do Citocromo P-450/biossíntese , Flavonoides/farmacologia , Intestino Delgado/enzimologia , Compostos Alílicos/farmacologia , Animais , Western Blotting , Curcumina/farmacologia , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP2B1/biossíntese , Citocromo P-450 CYP2B1/genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Ratos , Ratos Wistar , Resveratrol , Estilbenos/farmacologia , Sulfetos/farmacologia , Xenobióticos/metabolismo , beta-Naftoflavona/farmacologia
20.
Cell Rep ; 24(13): 3404-3412, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257202

RESUMO

Orderly progressions of events in the cell division cycle are necessary to ensure the replication of DNA and cell division. Checkpoint systems allow the accurate execution of each cell-cycle phase. The precise regulation of the levels of cyclin proteins is fundamental to coordinate cell division with checkpoints, avoiding genome instability. Cyclin F has important functions in regulating the cell cycle during the G2 checkpoint; however, the mechanisms underlying the regulation of cyclin F are poorly understood. Here, we observe that cyclin F is regulated by proteolysis through ß-TrCP. ß-TrCP recognizes cyclin F through a non-canonical degron site (TSGXXS) after its phosphorylation by casein kinase II. The degradation of cyclin F mediated by ß-TrCP occurs at the G2/M transition. This event is required to promote mitotic progression and favors the activation of a transcriptional program required for mitosis.


Assuntos
Caseína Quinase II/metabolismo , Ciclinas/metabolismo , Mitose , Proteólise , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Ciclinas/química , Células HEK293 , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA