Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(9): 14750-14770, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157333

RESUMO

We present a numerical investigation of directly fiber-coupled hybrid circular Bragg gratings (CBGs) featuring electrical control for operation in the application relevant wavelength regimes around 930 nm as well as the telecom O- and C-band. We use a surrogate model combined with a Bayesian optimization approach to perform numerical optimization of the device performance which takes into account robustness with respect to fabrication tolerances. The proposed high-performance designs combine hybrid CBGs with a dielectric planarization and a transparent contact material, enabling > 86% direct fiber coupling efficiency (> 93% efficiency into NA 0.8) while exhibiting Purcell factors > 20. Especially the proposed designs for the telecom range prove robust and can sustain expected fiber efficiencies of more than (82.2±4.1)-5.5+2.2% and expected average Purcell factors of up to (23.2±2.3)-3.0+3.2 assuming conservative fabrication accuracies. The wavelength of maximum Purcell enhancement proves to be the most affected performance parameter by the deviations. Finally, we show that electrical field strengths suitable for Stark-tuning of an embedded quantum dot can be reached in the identified designs. Our work provides blueprints for high-performance quantum light sources based on fiber-pigtailed and electrically-controlled quantum dot CBG devices for quantum information applications.

2.
J Am Chem Soc ; 144(4): 1663-1671, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35073069

RESUMO

Mastering the manipulation of chirality at the nanoscale has long been a priority for chemists, physicists, and materials scientists, given its importance in the biochemical processes of the natural world and in the development of novel technologies. In this vein, the formation of novel metamaterials and sensing platforms resulting from the synergic combination of chirality and plasmonics has opened new avenues in nano-optics. Recently, the implementation of chiral plasmonic nanostructures in photocatalysis has been proposed theoretically as a means to drive polarization-dependent photochemistry. In the present work, we demonstrate that the use of inorganic nanometric chiral templates for the controlled assembly of Au and TiO2 nanoparticles leads to the formation of plasmon-based photocatalysts with polarization-dependent reactivity. The formation of plasmonic assemblies with chiroptical activities induces the asymmetric formation of hot electrons and holes generated via electromagnetic excitation, opening the door to novel photocatalytic and optoelectronic features. More precisely, we demonstrate that the reaction yield can be improved when the helicity of the circularly polarized light used to activate the plasmonic component matches the handedness of the chiral substrate. Our approach may enable new applications in the fields of chirality and photocatalysis, particularly toward plasmon-induced chiral photochemistry.

3.
Opt Express ; 30(10): 15913-15928, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221446

RESUMO

We perform extended numerical studies to maximize the overall photon coupling efficiency of fiber-coupled quantum dot single-photon sources emitting in the near-infrared and O-band and C-band. Using the finite element method, we optimize the photon extraction and fiber-coupling efficiency of quantum dot single-photon sources based on micromesas, microlenses, circular Bragg grating cavities and micropillars. The numerical simulations which consider the entire system consisting of the quantum dot source itself, the coupling lens, and the single-mode fiber, yield overall photon coupling efficiencies of up to 83%. Our work provides objectified comparability of different fiber-coupled single-photon sources and proposes optimized geometries for the realization of practical and highly efficient quantum dot single-photon sources.

4.
Opt Express ; 29(14): 22517-22532, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34266013

RESUMO

Multi-junction solar cells allow to utilize sunlight more effectively than single junction solar cells. In this work, we present optical simulations of III-V-on-silicon solar cells with a metal grating at the back, which experimentally have reached more than 33% power conversion efficiency. First, we perform simulations with the finite element method and compare them with experimental data to validate our model. We find that accurately modeling the investigated geometrical structure is necessary for best agreement between simulation and experimental measurements. Then, we optimize the grating for maximized light trapping using a computationally efficient Bayesian optimization algorithm. The photo current density of the limiting silicon bottom cell is improved from 13.48 mA/cm2 for the experimental grating to 13.85 mA/cm2 for the optimized metal grating. Investigation of all geometrical optimization parameters of the grating (period, height,…) shows that the structure is most sensitive towards the period, a parameter highly controllable in manufacturing by inference lithography. The results show a pathway to exceed the current world record efficiency of the III-V-on-silicon solar cell technology.

5.
J Am Chem Soc ; 142(9): 4193-4205, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32026688

RESUMO

The realization of chiral photochemical reactions at the molecular level has proven to be a challenging task, with invariably low efficiencies originating from very small optical circular dichroism signals. On the contrary, colloidal nanocrystals offer a very large differential response to circularly polarized light when designed with chiral geometries. We propose taking advantage of this capability, introducing a novel mechanism driving surface photochemistry in a chiral nanocrystal. Plasmonic nanocrystals exhibit anomalously large asymmetry factors in optical circular dichroism (CD), and the related hot-electron generation shows in turn a very strong asymmetry, serving as a mechanism for chiral growth. Through theoretical modeling, we show that chiral plasmonic nanocrystals can enable chiral surface growth based on the generation of energetic (hot) electrons. Using simple and realistic phenomenological models, we illustrate how this kind of surface photochemistry can be observed experimentally. The proposed mechanism is efficient if it operates on an already strongly chiral nanocrystal, whereas our proposed mechanism does not show chiral growth for initially nonchiral structures in a solution. The asymmetry factors for the chiral effects, driven by hot electrons, exceed the values observed in chiral molecular photophysics at least 10-fold. The proposed chiral-growth mechanism for the transformation of plasmonic colloids is fundamentally different to the traditional schemes of chiral photochemistry at the molecular level.

6.
Opt Express ; 28(5): 6452-6468, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225893

RESUMO

The use of flat diffractive optical elements (DOEs) for broadband applications, e.g. conventional optical systems, requires DOEs that maintain high efficiencies across the required range of wavelengths, angles of incidence, and grating periods. Here we introduce a general framework for how dispersion engineering can be used to design DOEs that fulfill these requirements and use our approach to determine design rules for broadband DOEs. Our analysis shows that the key to making échelette-type gratings (EGs) suitable for broadband optical systems is the development of new optical materials with specific uncommon dispersion properties. Subsequently, we use our framework to design a representative range of prototype EGs, which allows us to link the specifications of an optical system to the requirements on the EGs' materials. Finally, we show that our design rules apply to all DOEs based on propagation delays including GRIN DOEs and metagratings. Our design rules therefore guide the way towards unlocking the full potential of DOEs for different kinds of broadband applications.

7.
Opt Express ; 28(3): 3619-3635, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122027

RESUMO

Light emitting diodes (LEDs) in the deep ultra-violet (DUV) offer new perspectives for multiple applications ranging from 3D printing to sterilization. However, insufficient light extraction severely limits their efficiency. Nanostructured sapphire substrates in aluminum nitride based LED devices have recently shown to improve crystal growth properties, while their impact on light extraction has not been fully verified. We present a model for understanding the impact of nanostructures on the light extraction capability of DUV-LEDs. The model assumes an isotropic light source in the semiconductor layer stack and combines rigorously computed scattering matrices with a multilayer solver. We find that the optical benefit of using a nanopatterned as opposed to a planar sapphire substrate to be negligible, if parasitic absorption in the p-side of the LED is dominant. If losses in the p-side are reduced to 20%, then for a wavelength of 265 nm an increase of light extraction efficiency from 7.8% to 25.0% is possible due to nanostructuring. We introduce a concept using a diffuse ('Lambertian') reflector as p-contact, further increasing the light extraction efficiency to 34.2%. The results underline that transparent p-sides and reflective p-contacts in DUV-LEDs are indispensable for enhanced light extraction regardless of the interface texture between semiconductor and sapphire substrate. The optical design guidelines presented in this study will accelerate the development of high-efficiency DUV-LEDs. The model can be extended to other multilayer opto-electronic nanostructured devices such as photovoltaics or photodetectors.

8.
Opt Express ; 28(16): 23122-23132, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752313

RESUMO

We demonstrate the retrieval of deep subwavelength structural information in nano-optical polarizers by scatterometry of quasi-bound states in the continuum (quasi-BICs). To this end, we investigate titanium dioxide wire grid polarizers for application wavelengths in the deep ultraviolet (DUV) spectral range fabricated with a self-aligned double-patterning process. In contrast to the time-consuming and elaborate measurement techniques like scanning electron microscopy, asymmetry induced quasi-BICs occurring in the near ultraviolet and visible spectral range provide an easily accessible and efficient probe mechanism. Thereby, dimensional parameters are retrieved with uncertainties in the sub-nanometer range. Our results show that BICs are a promising tool for process control in optics and semiconductor technology.

9.
Opt Express ; 27(4): 5097-5115, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876113

RESUMO

We report a strong correlation between the calculated broadband circular differential optical absorption (CDOA) and the geometric chirality of plasmonic meta-atoms with two-dimensional chirality. We investigate this correlation using three common gold meta-atom geometries: L-shapes, triangles, and nanorod dimers, over a broad range of geometric parameters. We show that this correlation holds for both contiguous plasmonic meta-atoms and non-contiguous structures which support plasmonic coupling effects. A potential application for this correlation is the rapid optimization of plasmonic nanostructure for maximum broadband CDOA.

10.
Opt Express ; 27(19): 26772-26785, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674552

RESUMO

We present an effective method for direct fiber coupling of a quantum dot (QD) that is deterministically incorporated into a cylindrical mesa. For precise positioning of the fiber with respect to the QD-mesa, we use a scanning procedure relying on interference of light reflected back from the fiber end-face and the top surface of the mesa, applicable for both single-mode and multi-mode fibers. The central part of the fiber end-face is etched to control the required distance between the top surface of the mesa and the fiber core. Emission around 1260 nm from a fiber-coupled InGaAs/GaAs QD is demonstrated and its stability is proven over multiple cooling cycles. Moreover, a single photon character of emission from such system for a line emitting above 1200 nm is proven experimentally by photon autocorrelation measurements with an obtained value of the second order correlation function at zero time-delay well below 0.5.

11.
Nano Lett ; 18(4): 2336-2342, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29557665

RESUMO

The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g(2)(0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

12.
Opt Express ; 26(2): A99-A107, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29402059

RESUMO

The optical response of periodically nanotextured layer stacks with dimensions comparable to the wavelength of the incident light can be computed with rigorous Maxwell solvers, such as the finite element method (FEM). Experimentally, such layer stacks are often prepared on glass superstrates with a thickness, which is orders of magnitude larger than the wavelength. For many applications, light in these thick superstrates can be treated incoherently. The front side of thick superstrate is located far away from the computational domain of the Maxwell solvers. Nonetheless, it has to be considered in order to achieve accurate results. In this contribution, we discuss how solutions of rigorous Maxwell solvers can be corrected for flat front sides of the superstrates with an incoherent a posteriori approach. We test these corrections for hexagonal sinusoidal nanotextured silica-silicon interfaces, which are applied in certain silicon thin-film solar cells. These corrections are determined via a scattering matrix, which contains the full scattering information of the periodically nanotextured structure. A comparison with experimental data reveals that higher-order corrections can predict the measured reflectivity of the samples much better than an often-applied zeroth-order correction.

13.
Opt Express ; 26(7): 8479-8492, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715814

RESUMO

We present a numerical method for the accurate and efficient simulation of strongly localized light sources, such as quantum dots, embedded in dielectric micro-optical structures. We apply the method in order to optimize the photon extraction efficiency of a single-photon emitter consisting of a quantum dot embedded into a multi-layer stack with further lateral structures. Furthermore, we present methods to study the robustness of the extraction efficiency with respect to fabrication errors and defects.

14.
Opt Express ; 26(9): 11366-11392, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716058

RESUMO

We present numerical studies of two photonic crystal membrane microcavities, a short line-defect cavity with a relatively low quality (Q) factor and a longer cavity with a high Q. We use five state-of-the-art numerical simulation techniques to compute the cavity Q factor and the resonance wavelength λ for the fundamental cavity mode in both structures. For each method, the relevant computational parameters are systematically varied to estimate the computational uncertainty. We show that some methods are more suitable than others for treating these challenging geometries.

15.
Opt Express ; 24(10): 10931-8, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409914

RESUMO

The optical properties of photonic crystals (PhCs) are strongly affected by their spatial symmetry characteristics. We observe anticrossing phenomena for large-area slab-type silicon PhCs sandwiched between a glass substrate and air. If a glass superstrate plus an index-matching fluid is added, thus establishing a mirror symmetry in z-direction, the anticrossing disappears. These characteristics are analyzed numerically using a finite-element Maxwell solver, and experimentally using large area samples made by nanoimprint lithography. We further discuss the findings by symmetry considerations.

16.
Opt Express ; 24(6): A569-80, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136877

RESUMO

We numerically study coupling of light into silicon (Si) on glass using different square and hexagonal sinusoidal nanotextures. After describing sinusoidal nanotextures mathematically, we investigate how their design affects coupling of light into Si using a rigorous solver of Maxwell's equations. We discuss nanotextures with periods between 350 nm and 1050 nm and aspect ratios up to 0.5. The maximally observed gain in the maximal achievable photocurrent density coupled into the Si absorber is 7.0 mA/cm2 and 3.6 mA/cm2 for a layer stack without and with additional antireflective silicon nitride layers, respectively. A promising application is the use as smooth anti-reflective coatings in liquid-phase crystallized Si thin-film solar cells.

17.
Nano Lett ; 14(5): 2934-40, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24746023

RESUMO

Silicon wafers are commonly etched in potassium hydroxide solutions to form highly symmetric surface structures. These arise when slow-etching {111} atomic planes are exposed on standard low-index surfaces. However, the ability of nonstandard high-index wafers to provide more complex structures by tilting the {111} planes has not been fully appreciated. We demonstrate the power of this approach by creating chiral surface structures and nanoparticles of a specific handedness from gold. When the nanoparticles are dispersed in liquids, gold colloids exhibiting record molar circular dichroism (>5 × 10(9) M(-1) cm(-1)) at red wavelengths are obtained. The nanoparticles also present chiral pockets for binding.

18.
Opt Express ; 22(17): 19936-46, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321204

RESUMO

Chiral helix-based metamaterials can potentially serve as compact and broadband circular polarizers. We have recently shown that the physics of structures composed of multiple intertwined helices, so called N-helices with N being an integer multiple of 4, is distinct from that of structures made of single circular helices (N = 1). In particular, undesired circular polarization conversion is strictly eliminated for N = 4 helices arranged on a square lattice. However, the fabrication of such structures for infrared/visible operation wavelengths still poses very significant challenges. Thus, we here revisit the possibility of reducing N from 4 to 3, which would ease micro-fabrication considerably. We show analytically that N = 3 helices arranged on a hexagonal lattice exhibit strictly vanishing circular polarization conversion. N = 3 is the smallest option as N = 2 obviously leads to linear birefringence. To additionally improve the circular-polarizer operation bandwidth and the extinction ratio while maintaining high transmission for the wanted polarization and zero conversion, we also investigate by numerical calculations N = 3 helices with tapered diameter along the helix axis. We find operation bandwidths as large as 2.4 octaves.

19.
Opt Express ; 22(8): 9971-82, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787879

RESUMO

Within the past several years a tremendous progress regarding optical nano-antennas could be witnessed. It is one purpose of optical nano-antennas to resonantly enhance light-matter interactions at the nanoscale, e.g. the interaction of an external illumination with molecules. In this specific, but in almost all schemes that take advantage of resonantly enhanced electromagnetic fields in the vicinity of nano-antennas, the precise knowledge of the spectral position of resonances is of paramount importance to fully exploit their beneficial effects. Thus far, however, many nano-antennas were only optimized with respect to their far-field characteristics, i.e. in terms of their scattering or extinction cross sections. Although being an emerging feature in many numerical simulations, it was only recently fully appreciated that there exists a subtle but very important difference in the spectral position of resonances in the near-and the far-field. With the purpose to quantify this shift, Zuloaga et al. suggested a Lorentzian model to estimate the resonance shift. Here, we devise on fully analytical grounds a strategy to predict the resonance in the near-field directly from that in the far-field and disclose that the issue is involved and multifaceted, in general. We outline the limitations of our theory if more sophisticated optical nano-antennas are considered where higher order multipolar contributions and higher order antenna resonances become increasingly important. Both aspects are highlighted by numerically studying relevant nano-antennas.

20.
Opt Express ; 21(6): 6794-806, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546062

RESUMO

High-quality cavities in hybrid material systems have various interesting applications. We perform a comprehensive modeling comparison on such a design, where confinement in the III-V material is provided by gradual photonic crystal tuning, a recently proposed method offering strong resonances. The III-V cavity couples to an underlying silicon waveguide. We report on the device properties using four simulation methods: finite-difference time-domain (FDTD), finite-element method (FEM), bidirectional eigenmode propagation (BEP) and aperiodic rigorous coupled wave analysis (aRCWA). We explain the major confinement and coupling effects, consistent with the simulation results. E.g. for strong waveguide coupling, we find quantitative discrepancies between the methods, which establishes the proposed high-index-contrast, lossy, 3D structure as a challenging modeling benchmark.


Assuntos
Desenho Assistido por Computador , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA